An efficient particle swarm optimization algorithm to solve optimal power flow problem integrated with FACTS devices

粒子群优化 计算机科学 数学优化 电力系统 最优化问题 柔性交流输电系统 操作点 传动系统 功率流 电压 算法 功率(物理) 传输(电信) 数学 工程类 电子工程 电信 量子力学 电气工程 物理
作者
Ehsan Naderi,Mahdi Pourakbari‐Kasmaei,Hamdi Abdi
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:80: 243-262 被引量:129
标识
DOI:10.1016/j.asoc.2019.04.012
摘要

Optimal power flow (OPF) is one of the most important tools in power system operation and control, which determines the minimum operating cost and retains the control variables in their secure boundaries. This paper takes into account several unbridled practical constraints in the OPF problem, three of which – that is – valve-point effect, multi-fuel option, and, above all, prohibited operating zone are the most conspicuous ones. Further, the flexible alternating current transmission systems (FACTS) devices are considered, as well, which have several merits such as decreasing the active power transmission loss, controlling the power flow, and improving the voltage stability/profile, to name but a few. Accordingly, thyristor controlled series capacitor (TCSC) – the most popular and common component of the FACTS equipment’s category – is utilized in this study. As a result, the OPF problem integrated with such practical constraints referred to above as well as FACTS devices becomes a highly nonlinear-nonconvex optimization problem and to solve it, a reliable and efficient evolutionary algorithm such as fuzzy-based improved comprehensive-learning particle swarm optimization (FBICLPSO) algorithm is introduced. The proposed approach is scrutinized on IEEE 30-bus test system, which is a commonly used test system for solving the non-smooth and non-convex versions of the OPF problem. Comparing the obtained results by the proposed algorithm with the available alternatives in the literature corroborate the potential and effectiveness of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
个木发布了新的文献求助10
刚刚
上官若男应助SY采纳,获得10
1秒前
不易BY完成签到,获得积分10
1秒前
ee关闭了ee文献求助
1秒前
Ysh完成签到,获得积分20
1秒前
拼搏念蕾完成签到 ,获得积分10
1秒前
一页完成签到,获得积分10
2秒前
眯眯眼的衬衫应助JiaqiLiu采纳,获得10
2秒前
科研通AI2S应助VDC采纳,获得10
2秒前
wwt发布了新的文献求助10
2秒前
务实大船完成签到,获得积分10
3秒前
蜗牛撵大象完成签到,获得积分10
3秒前
4秒前
sun发布了新的文献求助10
4秒前
4秒前
二二二发布了新的文献求助10
5秒前
开心的傲安完成签到,获得积分20
5秒前
麻麻完成签到,获得积分20
5秒前
DDTT完成签到,获得积分10
6秒前
霸气的念云完成签到,获得积分10
6秒前
Orange应助欢呼小蚂蚁采纳,获得10
6秒前
6秒前
SQ完成签到,获得积分10
7秒前
7秒前
飞跃海龙完成签到 ,获得积分10
7秒前
ufuon发布了新的文献求助10
8秒前
momo完成签到,获得积分10
9秒前
赘婿应助二二二采纳,获得10
9秒前
JamesPei应助HongJiang采纳,获得10
9秒前
clarkq完成签到,获得积分10
10秒前
orixero应助LIU采纳,获得10
10秒前
经法发布了新的文献求助10
10秒前
不吃橘子完成签到,获得积分10
10秒前
Cheryy完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
ding应助哈哈哈哈采纳,获得10
12秒前
Draeck发布了新的文献求助10
12秒前
kingwhitewing发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678