An efficient particle swarm optimization algorithm to solve optimal power flow problem integrated with FACTS devices

粒子群优化 计算机科学 数学优化 电力系统 最优化问题 柔性交流输电系统 操作点 传动系统 功率流 电压 算法 功率(物理) 传输(电信) 数学 工程类 电子工程 电信 物理 电气工程 量子力学
作者
Ehsan Naderi,Mahdi Pourakbari‐Kasmaei,Hamdi Abdi
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:80: 243-262 被引量:129
标识
DOI:10.1016/j.asoc.2019.04.012
摘要

Optimal power flow (OPF) is one of the most important tools in power system operation and control, which determines the minimum operating cost and retains the control variables in their secure boundaries. This paper takes into account several unbridled practical constraints in the OPF problem, three of which – that is – valve-point effect, multi-fuel option, and, above all, prohibited operating zone are the most conspicuous ones. Further, the flexible alternating current transmission systems (FACTS) devices are considered, as well, which have several merits such as decreasing the active power transmission loss, controlling the power flow, and improving the voltage stability/profile, to name but a few. Accordingly, thyristor controlled series capacitor (TCSC) – the most popular and common component of the FACTS equipment’s category – is utilized in this study. As a result, the OPF problem integrated with such practical constraints referred to above as well as FACTS devices becomes a highly nonlinear-nonconvex optimization problem and to solve it, a reliable and efficient evolutionary algorithm such as fuzzy-based improved comprehensive-learning particle swarm optimization (FBICLPSO) algorithm is introduced. The proposed approach is scrutinized on IEEE 30-bus test system, which is a commonly used test system for solving the non-smooth and non-convex versions of the OPF problem. Comparing the obtained results by the proposed algorithm with the available alternatives in the literature corroborate the potential and effectiveness of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wh完成签到,获得积分10
刚刚
小落看不完完成签到 ,获得积分10
刚刚
大个应助linlinWang采纳,获得10
1秒前
邓佳鑫Alan应助懒人采纳,获得10
1秒前
Disguise完成签到 ,获得积分10
1秒前
日月小完成签到,获得积分10
1秒前
A1youWe发布了新的文献求助10
1秒前
diu完成签到,获得积分10
1秒前
风清扬发布了新的文献求助10
2秒前
平淡访冬完成签到,获得积分10
2秒前
柴六斤发布了新的文献求助10
2秒前
啊就是地方就啊都是完成签到,获得积分10
2秒前
3秒前
3秒前
爱听歌的夏烟完成签到,获得积分10
3秒前
4秒前
堪雅寒完成签到,获得积分10
4秒前
spring079完成签到,获得积分10
4秒前
4秒前
linliqing完成签到,获得积分10
4秒前
4秒前
JamesPei应助happiness采纳,获得10
4秒前
flying蝈蝈完成签到,获得积分10
4秒前
vvvvvv完成签到,获得积分10
5秒前
5秒前
热心乐驹完成签到,获得积分10
6秒前
念念完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
123study0完成签到,获得积分10
7秒前
锂氧完成签到,获得积分10
7秒前
曼曼发布了新的文献求助10
8秒前
8秒前
FashionBoy应助菠萝水手采纳,获得30
9秒前
Orange应助洋芋土豆丝采纳,获得10
9秒前
9秒前
9秒前
dockercompose99完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402410
求助须知:如何正确求助?哪些是违规求助? 4521021
关于积分的说明 14083516
捐赠科研通 4435060
什么是DOI,文献DOI怎么找? 2434548
邀请新用户注册赠送积分活动 1426679
关于科研通互助平台的介绍 1405439