已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Noninvasive Fine-Grained Sleep Monitoring Leveraging Smartphones

计算机科学 睡眠(系统调用) 呼吸 可穿戴计算机 加速度计 实时计算 光容积图 噪音(视频) 多导睡眠图 持续监测 人工智能 嵌入式系统 计算机视觉 医学 脑电图 精神科 图像(数学) 操作系统 滤波器(信号处理) 经济 解剖 运营管理
作者
Yanzhi Ren,Chen Wang,Yingying Chen,Jie Yang,Hongwei Li
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:6 (5): 8248-8261 被引量:27
标识
DOI:10.1109/jiot.2019.2922283
摘要

Sleep monitoring has drawn increasing attention as sleep quality is important to maintain a person's well-being. For instance, serious health problems, such as cardiovascular disease, fatigue, or depression, are usually associated with inadequate and irregular sleep. Traditional sleep monitoring systems involve wearable sensors with professional installation, and thus are usually limited to clinical usage. Recent work for sleep monitoring can detect several sleep events, such as coughing and snoring, using smartphone sensors. However, such coarse-grained sleep monitoring is unable to detect the breathing rate which is an important health indicator. In this paper, we present a fine-grained sleep monitoring system to detect the breathing rate and sleep events simultaneously by leveraging smartphones. Our system exploits the readily available smartphone earphone placed close to the user to reliably capture the human breathing sound. Given the captured acoustic sound, noise reduction is performed to remove the environmental noise and the breathing rate is then identified based on the signal envelope detection. Our system can further detect some sleep events, including snoring, coughing, turning over, and getting up, based on the features extracted from the acoustic sound. Moreover, we develop a body movement-assisted sleep event detection method to provide higher detection accuracy by further exploiting the user's body movement patterns captured by the accelerometer embedded on smartphones. Our extensive experiments involving nine subjects over six months confirm the effectiveness of our proposed system on breathing rate monitoring and sleep events detection under various environments. By combining breathing rate and sleep events, our system can provide noninvasive and continuous fine-grained sleep monitoring for healthcare related applications, such as sleep apnea monitoring, as evidenced by our experimental study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
东边完成签到,获得积分10
1秒前
1秒前
2秒前
所所应助欣喜眼神采纳,获得10
4秒前
Ania99完成签到 ,获得积分10
6秒前
6秒前
多边棱发布了新的文献求助200
6秒前
归尘发布了新的文献求助10
9秒前
CipherSage应助Stfjma采纳,获得30
11秒前
开减除完成签到,获得积分10
11秒前
12秒前
13秒前
燕鹏完成签到,获得积分10
15秒前
15秒前
17秒前
19秒前
20秒前
Ava应助小石头采纳,获得10
21秒前
23秒前
Athena发布了新的文献求助10
24秒前
24秒前
25秒前
999发布了新的文献求助10
26秒前
飞快的小懒虫完成签到,获得积分10
27秒前
SiO2完成签到 ,获得积分10
27秒前
29秒前
29秒前
30秒前
Tumumu完成签到,获得积分10
31秒前
夏弥2016发布了新的文献求助10
32秒前
打打应助隐形的糖豆采纳,获得10
33秒前
稗子发布了新的文献求助10
34秒前
34秒前
34秒前
今后应助哈比人linling采纳,获得30
35秒前
Stfjma发布了新的文献求助30
35秒前
36秒前
37秒前
zz完成签到,获得积分20
37秒前
夏筱应助YAW采纳,获得10
38秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561692
求助须知:如何正确求助?哪些是违规求助? 3135299
关于积分的说明 9411853
捐赠科研通 2835787
什么是DOI,文献DOI怎么找? 1558642
邀请新用户注册赠送积分活动 728433
科研通“疑难数据库(出版商)”最低求助积分说明 716825