Flank tool wear prediction of laser-assisted milling

材料科学 侧面 磨料 激光器 拓本 高温合金 刀具磨损 磨损(机械) 机械加工 复合材料 冶金 光学 合金 人类学 物理 社会学
作者
Yixuan Feng,Tsung-Pin Hung,Yu-Ting Lu,Yu-Fu Lin,Fu-Chuan Hsu,Chiu‐Feng Lin,Yingcheng Lu,Steven Y. Liang
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:43: 292-299 被引量:38
标识
DOI:10.1016/j.jmapro.2019.05.008
摘要

An analytical predictive model for flank tool wear in laser-assisted milling is proposed based on the principles of abrasive, adhesive, and diffusive wear. The laser effect is included by treating the laser beam as a heat source on top surface. Heat convection between top surface and the environment is factored into account. Isothermal boundary conditions are assumed for the laser-affected area. The laser preheating temperature field is averaged along the tool-workpiece interface as initial temperature. Next, the milling configuration is treated as orthogonal cutting followed by angular-dependent coordinate transformation at each instance. The effective force due to flank wear is calculated by integrating the stress component along the chip cross section and wear land, and the average stress on tool-workpiece interface due to flank wear is calculated based on the effective force and contact area. The average temperature along the interface is derived through imaginary heat source method with secondary and rubbing heat sources considered. The flank wear rate prediction considers abrasion, adhesion, and diffusion. The proposed model is validated through experimental measurements on the laser-assisted milling of K24 nickel-based superalloy, and a sensitivity analysis with respect to three cutting and two laser parameters is conducted. The proposed predictive model is able to match the wear progressions during steady state wear region in less than two minutes with high accuracy of 6.48% error on average. Therefore, it is valuable for providing a fast, credible, and physics-based method for the prediction of flank tool wear in laser-assisted milling of various materials. Through sensitivity analysis, the model is able to guide the selection of cutting and laser parameters when the flank tool wear is the main concern.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
科研通AI5应助yx采纳,获得10
2秒前
3秒前
hym完成签到,获得积分10
3秒前
马静雨关注了科研通微信公众号
3秒前
111222完成签到,获得积分20
3秒前
4秒前
4秒前
三卡车安排你完成签到,获得积分10
5秒前
请叫我风吹麦浪应助Seiswan采纳,获得10
5秒前
5秒前
6秒前
6秒前
6秒前
7秒前
曾经以亦完成签到,获得积分10
7秒前
所所应助发疯的游子采纳,获得10
7秒前
8秒前
jcm发布了新的文献求助10
9秒前
辛勤的初晴完成签到,获得积分20
9秒前
Scidog发布了新的文献求助10
9秒前
单于静柏完成签到,获得积分10
10秒前
校长发布了新的文献求助10
10秒前
11秒前
御觞丶完成签到,获得积分10
11秒前
今后应助zhui采纳,获得10
12秒前
12秒前
SciGPT应助雾蓝采纳,获得10
12秒前
lulu828完成签到,获得积分10
13秒前
13秒前
科研闲人完成签到,获得积分10
14秒前
内向秋寒发布了新的文献求助10
14秒前
14秒前
黑色兔子完成签到 ,获得积分10
14秒前
15秒前
四小时充足睡眠完成签到,获得积分10
16秒前
zhang0403完成签到,获得积分10
16秒前
欢喜的毛豆完成签到 ,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794