Connectome-Based Patterns of First-Episode Medication-Naïve Patients With Schizophrenia

精神分裂症(面向对象编程) 连接体 心理学 精神科 神经科学 功能连接
作者
Long‐Biao Cui,Yongbin Wei,Yi-Bin Xi,Alessandra Griffa,Siemon C. de Lange,René S. Kahn,Hong Yin,Martijn P. van den Heuvel
出处
期刊:Schizophrenia Bulletin [Oxford University Press]
卷期号:45 (6): 1291-1299 被引量:53
标识
DOI:10.1093/schbul/sbz014
摘要

Abstract Emerging evidence indicates that a disruption in brain network organization may play an important role in the pathophysiology of schizophrenia. The neuroimaging fingerprint reflecting the pathophysiology of first-episode schizophrenia remains to be identified. Here, we aimed at characterizing the connectome organization of first-episode medication-naïve patients with schizophrenia. A cross-sectional structural and functional neuroimaging study using two independent samples (principal dataset including 42 medication-naïve, previously untreated patients and 48 healthy controls; replication dataset including 39 first-episode patients [10 untreated patients] and 66 healthy controls) was performed. Brain network architecture was assessed by means of white matter fiber integrity measures derived from diffusion-weighted imaging (DWI) and by means of structural-functional (SC-FC) coupling measured by combining DWI and resting-state functional magnetic resonance imaging. Connectome rich club organization was found to be significantly disrupted in medication-naïve patients as compared with healthy controls (P = .012, uncorrected), with rich club connection strength (P = .032, uncorrected) and SC-FC coupling (P < .001, corrected for false discovery rate) decreased in patients. Similar results were found in the replication dataset. Our findings suggest that a disruption of rich club organization and functional dynamics may reflect an early feature of schizophrenia pathophysiology. These findings add to our understanding of the neuropathological mechanisms of schizophrenia and provide new insights into the early stages of the disorder.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
edenz完成签到,获得积分10
刚刚
小刘完成签到,获得积分10
刚刚
橙子完成签到,获得积分10
刚刚
xuandandan发布了新的文献求助20
刚刚
研团子发布了新的文献求助10
1秒前
1秒前
lwh完成签到,获得积分10
2秒前
hongwanwan发布了新的文献求助10
2秒前
11发布了新的文献求助10
2秒前
3秒前
开开心心完成签到 ,获得积分10
3秒前
科研通AI6应助忧郁的灵枫采纳,获得10
3秒前
大个应助忧郁的灵枫采纳,获得10
3秒前
小分队发布了新的文献求助10
4秒前
xuxu应助鳗鱼傲柏采纳,获得10
4秒前
科研通AI6应助忧郁的灵枫采纳,获得50
4秒前
PandaC发布了新的文献求助10
4秒前
科研通AI2S应助忧郁的灵枫采纳,获得10
4秒前
CodeCraft应助忧郁的灵枫采纳,获得10
4秒前
4秒前
科研通AI6应助chengxue采纳,获得10
4秒前
汉堡包应助忧郁的灵枫采纳,获得10
4秒前
赘婿应助忧郁的灵枫采纳,获得10
4秒前
zhw完成签到 ,获得积分10
4秒前
田様应助忧郁的灵枫采纳,获得10
5秒前
大模型应助zhr采纳,获得10
5秒前
科研通AI6应助忧郁的灵枫采纳,获得10
5秒前
5秒前
123完成签到 ,获得积分10
5秒前
6秒前
窗外的你发布了新的文献求助10
7秒前
inter完成签到,获得积分10
7秒前
X123完成签到,获得积分10
8秒前
8秒前
淡淡从安完成签到 ,获得积分10
8秒前
8秒前
Joker发布了新的文献求助10
8秒前
领导范儿应助开朗小懒猪采纳,获得10
9秒前
离开时是天命完成签到,获得积分10
9秒前
醉玉颓山完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5439303
求助须知:如何正确求助?哪些是违规求助? 4550351
关于积分的说明 14224204
捐赠科研通 4471300
什么是DOI,文献DOI怎么找? 2450329
邀请新用户注册赠送积分活动 1441193
关于科研通互助平台的介绍 1417863