Hybrid Feature Selection Algorithm mRMR-ICA for Cancer Classification from Microarray Gene Expression Data

特征选择 支持向量机 计算机科学 预处理器 独立成分分析 模式识别(心理学) 人工智能 基因选择 冗余(工程) 最小冗余特征选择 微阵列分析技术 数据挖掘 基因 机器学习 生物 基因表达 遗传学 操作系统
作者
Shuaiqun Wang,Wei Kong,Aorigele,Jin Deng,Shangce Gao,Weiming Zeng
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science]
卷期号:21 (6): 420-430 被引量:16
标识
DOI:10.2174/1386207321666180601074349
摘要

Aims and Objective: Redundant information of microarray gene expression data makes it difficult for cancer classification. Hence, it is very important for researchers to find appropriate ways to select informative genes for better identification of cancer. This study was undertaken to present a hybrid feature selection method mRMR-ICA which combines minimum redundancy maximum relevance (mRMR) with imperialist competition algorithm (ICA) for cancer classification in this paper. Materials and Methods: The presented algorithm mRMR-ICA utilizes mRMR to delete redundant genes as preprocessing and provide the small datasets for ICA for feature selection. It will use support vector machine (SVM) to evaluate the classification accuracy for feature genes. The fitness function includes classification accuracy and the number of selected genes. Results: Ten benchmark microarray gene expression datasets are used to test the performance of mRMR-ICA. Experimental results including the accuracy of cancer classification and the number of informative genes are improved for mRMR-ICA compared with the original ICA and other evolutionary algorithms. Conclusion: The comparison results demonstrate that mRMR-ICA can effectively delete redundant genes to ensure that the algorithm selects fewer informative genes to get better classification results. It also can shorten calculation time and improve efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
脱壳金蝉发布了新的文献求助10
2秒前
彭于彦祖应助Oatmeal5888采纳,获得50
4秒前
无极微光应助huaming采纳,获得20
4秒前
JamesPei应助田国兵采纳,获得10
5秒前
天天快乐应助漏漏漏采纳,获得30
6秒前
hglll445完成签到,获得积分10
7秒前
leelmomimi完成签到,获得积分10
9秒前
9秒前
9秒前
科研通AI6应助决明采纳,获得10
9秒前
既晴复雨发布了新的文献求助10
12秒前
14秒前
15秒前
脑洞疼应助我要创新点采纳,获得10
16秒前
科研通AI6应助Sj泽采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
万能图书馆应助Judy采纳,获得10
18秒前
18秒前
18秒前
19秒前
21秒前
qingmoheng应助djbj2022采纳,获得10
21秒前
简单的大哥完成签到,获得积分10
22秒前
23秒前
23秒前
zzdd应助科研通管家采纳,获得10
23秒前
zzdd应助科研通管家采纳,获得10
23秒前
英姑应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
小蘑菇应助科研通管家采纳,获得10
24秒前
dew应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得30
24秒前
zzdd应助科研通管家采纳,获得10
24秒前
小二郎应助科研通管家采纳,获得10
24秒前
zzdd应助科研通管家采纳,获得10
24秒前
dew应助科研通管家采纳,获得10
24秒前
Zx_1993应助科研通管家采纳,获得20
24秒前
李爱国应助科研通管家采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532418
求助须知:如何正确求助?哪些是违规求助? 4621121
关于积分的说明 14577059
捐赠科研通 4561034
什么是DOI,文献DOI怎么找? 2499113
邀请新用户注册赠送积分活动 1479059
关于科研通互助平台的介绍 1450310