Growth Monitoring of Weak Gluten Wheat Using Visible and Multispectral UAV Imagery

多光谱图像 归一化差异植被指数 天蓬 遥感 植被(病理学) 植被指数 精准农业 相关系数 数学 环境科学 冬小麦 多光谱模式识别 叶面积指数 地理 农学 统计 生物 医学 考古 病理 农业
作者
Shizhou Du,Xiaohui Liu,Dongyan Zhang,Xiangqian Zhang,Linsheng Huang,Xin Zhao,Lu Xu,Yunfei Xu
标识
DOI:10.1109/agro-geoinformatics.2018.8476080
摘要

The quality of weak-gluten wheat is easily affected by management methods of field cultivation. U nmanned aerial vehicle (UAV) remote sensing technology can provide technical support for the optimization of cultivation management plan by dynamically monitoring the growth of wheat canopy. In this study, the digital and multispectral cameras mounted on UAV were used to capture canopy images of wheat during key growth stages. The visible and multispectral vegetation indexes of 10 kind of wheat varieties were calculated. The correlation between 13 vegetation indexes and ground-measured chlorophyll content SPAD was analyzed. The results showed that the vegetation index can effectively monitor the change of wheat growth. Among these vegetation indexes, the correlation between the visible light Excess Green index (ExG) and SPAD value is the highest, the determination coefficient R2 is 0.659. The multi-spectral normalized difference vegetation index (NDVI) has the best correlation with SPAD value, the R2 is 0.692. To choose the more suitable sensor for effective assessing the change of wheat growth, the ExG-SPAD and NDVI-SPAD inversion models were established based on the optimal vegetation indexes of these two sensors in midterm and late growth stage. The results shown that the R2 and RMSE of SPAD inversion model at the midterm growth stage were superior than those of late developmental period. Moreover, NDVI-SPAD model obtained more accurate result at midterm growth stage, the R 2 and the root mean square error (RMSE) are 0.717 and 1.878, respectively. In summary, the results of this study can provide important technical support for the production plan of weak-gluten wheat in the middle and lower reaches of the Yangtze River. It also helps to promote the further application of remote sensing technology in wheat breeding and cultivation management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hajimi123发布了新的文献求助10
刚刚
cleff完成签到 ,获得积分10
1秒前
充电宝应助陈少华采纳,获得10
2秒前
brotherpeng完成签到 ,获得积分10
2秒前
虚拟的尔风完成签到,获得积分20
6秒前
7秒前
11秒前
11秒前
12秒前
远看寒山完成签到,获得积分10
12秒前
花花完成签到,获得积分10
12秒前
12秒前
万能图书馆应助hajimi123采纳,获得10
13秒前
缥缈的初阳完成签到,获得积分10
14秒前
搜集达人应助flame采纳,获得10
14秒前
田帝完成签到,获得积分10
15秒前
刘佳会发布了新的文献求助10
15秒前
SciGPT应助ceeray23采纳,获得20
16秒前
陈少华发布了新的文献求助10
17秒前
wangwang完成签到 ,获得积分10
18秒前
18秒前
怕黑不惜发布了新的文献求助30
18秒前
深情安青应助尊敬寒松采纳,获得10
20秒前
25秒前
小马甲应助冲鸭666采纳,获得10
25秒前
26秒前
梅子完成签到,获得积分10
28秒前
29秒前
鸭鸭发布了新的文献求助10
30秒前
围城烟火完成签到,获得积分10
30秒前
尊敬寒松发布了新的文献求助10
31秒前
31秒前
小袁冲冲冲完成签到,获得积分10
31秒前
Star-XYX发布了新的文献求助10
32秒前
Owen应助高不二采纳,获得10
32秒前
田帝发布了新的文献求助10
32秒前
萌酱发布了新的文献求助10
32秒前
34秒前
123发布了新的文献求助10
35秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993711
求助须知:如何正确求助?哪些是违规求助? 3534447
关于积分的说明 11265414
捐赠科研通 3274169
什么是DOI,文献DOI怎么找? 1806326
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712