Growth Monitoring of Weak Gluten Wheat Using Visible and Multispectral UAV Imagery

多光谱图像 归一化差异植被指数 天蓬 遥感 植被(病理学) 植被指数 精准农业 相关系数 数学 环境科学 冬小麦 多光谱模式识别 叶面积指数 地理 农学 统计 生物 医学 考古 病理 农业
作者
Shizhou Du,Xiaohui Liu,Dongyan Zhang,Xiangqian Zhang,Linsheng Huang,Xin Zhao,Lu Xu,Yunfei Xu
标识
DOI:10.1109/agro-geoinformatics.2018.8476080
摘要

The quality of weak-gluten wheat is easily affected by management methods of field cultivation. U nmanned aerial vehicle (UAV) remote sensing technology can provide technical support for the optimization of cultivation management plan by dynamically monitoring the growth of wheat canopy. In this study, the digital and multispectral cameras mounted on UAV were used to capture canopy images of wheat during key growth stages. The visible and multispectral vegetation indexes of 10 kind of wheat varieties were calculated. The correlation between 13 vegetation indexes and ground-measured chlorophyll content SPAD was analyzed. The results showed that the vegetation index can effectively monitor the change of wheat growth. Among these vegetation indexes, the correlation between the visible light Excess Green index (ExG) and SPAD value is the highest, the determination coefficient R2 is 0.659. The multi-spectral normalized difference vegetation index (NDVI) has the best correlation with SPAD value, the R2 is 0.692. To choose the more suitable sensor for effective assessing the change of wheat growth, the ExG-SPAD and NDVI-SPAD inversion models were established based on the optimal vegetation indexes of these two sensors in midterm and late growth stage. The results shown that the R2 and RMSE of SPAD inversion model at the midterm growth stage were superior than those of late developmental period. Moreover, NDVI-SPAD model obtained more accurate result at midterm growth stage, the R 2 and the root mean square error (RMSE) are 0.717 and 1.878, respectively. In summary, the results of this study can provide important technical support for the production plan of weak-gluten wheat in the middle and lower reaches of the Yangtze River. It also helps to promote the further application of remote sensing technology in wheat breeding and cultivation management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
curtisness应助宇文青寒采纳,获得10
刚刚
顾矜应助Silole采纳,获得10
刚刚
刚刚
1秒前
沛沛发布了新的文献求助10
1秒前
CornellRong发布了新的文献求助10
2秒前
毛毛虫完成签到,获得积分10
3秒前
满意语风发布了新的文献求助10
3秒前
3秒前
1111发布了新的文献求助10
7秒前
斯文败类应助zeran采纳,获得10
7秒前
8秒前
9秒前
温柔柜子发布了新的文献求助10
9秒前
CornellRong完成签到,获得积分10
9秒前
10秒前
ppttyy完成签到 ,获得积分10
11秒前
CodeCraft应助甜屁儿采纳,获得10
12秒前
兜兜发布了新的文献求助10
13秒前
nlyk发布了新的文献求助10
13秒前
yeu103325完成签到,获得积分10
14秒前
NexusExplorer应助寒冷的断秋采纳,获得10
15秒前
李爱国应助nlyk采纳,获得10
18秒前
科研菜菜鸡完成签到,获得积分10
21秒前
浮游应助LEEGAN采纳,获得10
21秒前
Wwnjie应助LEEGAN采纳,获得10
21秒前
周周完成签到,获得积分20
21秒前
胡萝卜完成签到,获得积分10
22秒前
辜越涛发布了新的文献求助10
22秒前
23秒前
Lucas应助宇文青寒采纳,获得10
24秒前
予北完成签到 ,获得积分10
24秒前
26秒前
momo完成签到,获得积分20
26秒前
26秒前
淡然冬灵发布了新的文献求助10
26秒前
XCYIN完成签到,获得积分10
27秒前
周周发布了新的文献求助10
27秒前
桐桐应助dddnnn采纳,获得10
28秒前
脑洞疼应助林白采纳,获得10
29秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5383195
求助须知:如何正确求助?哪些是违规求助? 4506162
关于积分的说明 14023625
捐赠科研通 4415813
什么是DOI,文献DOI怎么找? 2425772
邀请新用户注册赠送积分活动 1418457
关于科研通互助平台的介绍 1396672