Growth Monitoring of Weak Gluten Wheat Using Visible and Multispectral UAV Imagery

多光谱图像 归一化差异植被指数 天蓬 遥感 植被(病理学) 植被指数 精准农业 相关系数 数学 环境科学 冬小麦 多光谱模式识别 叶面积指数 地理 农学 统计 生物 考古 病理 农业 医学
作者
Shizhou Du,Xiaohui Liu,Dongyan Zhang,Xiangqian Zhang,Linsheng Huang,Xin Zhao,Lu Xu,Yunfei Xu
标识
DOI:10.1109/agro-geoinformatics.2018.8476080
摘要

The quality of weak-gluten wheat is easily affected by management methods of field cultivation. U nmanned aerial vehicle (UAV) remote sensing technology can provide technical support for the optimization of cultivation management plan by dynamically monitoring the growth of wheat canopy. In this study, the digital and multispectral cameras mounted on UAV were used to capture canopy images of wheat during key growth stages. The visible and multispectral vegetation indexes of 10 kind of wheat varieties were calculated. The correlation between 13 vegetation indexes and ground-measured chlorophyll content SPAD was analyzed. The results showed that the vegetation index can effectively monitor the change of wheat growth. Among these vegetation indexes, the correlation between the visible light Excess Green index (ExG) and SPAD value is the highest, the determination coefficient R2 is 0.659. The multi-spectral normalized difference vegetation index (NDVI) has the best correlation with SPAD value, the R2 is 0.692. To choose the more suitable sensor for effective assessing the change of wheat growth, the ExG-SPAD and NDVI-SPAD inversion models were established based on the optimal vegetation indexes of these two sensors in midterm and late growth stage. The results shown that the R2 and RMSE of SPAD inversion model at the midterm growth stage were superior than those of late developmental period. Moreover, NDVI-SPAD model obtained more accurate result at midterm growth stage, the R 2 and the root mean square error (RMSE) are 0.717 and 1.878, respectively. In summary, the results of this study can provide important technical support for the production plan of weak-gluten wheat in the middle and lower reaches of the Yangtze River. It also helps to promote the further application of remote sensing technology in wheat breeding and cultivation management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助科研通管家采纳,获得60
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
orixero应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
充电宝应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
科研小白应助科研通管家采纳,获得40
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
活力绮兰应助科研通管家采纳,获得10
刚刚
感动秋完成签到 ,获得积分10
1秒前
1秒前
1秒前
gzsy完成签到 ,获得积分10
2秒前
2秒前
sexing发布了新的文献求助10
2秒前
丘比特应助koi采纳,获得10
2秒前
Sang完成签到 ,获得积分10
4秒前
4秒前
5秒前
金色年华完成签到,获得积分10
5秒前
丘比特应助daniel采纳,获得10
6秒前
我是老大应助szl采纳,获得10
7秒前
7秒前
赤邪完成签到,获得积分20
7秒前
小蘑菇应助复杂曼梅采纳,获得10
8秒前
9秒前
sexing完成签到,获得积分20
9秒前
你好发布了新的文献求助150
10秒前
10秒前
BareBear应助wfc采纳,获得10
11秒前
Dsivan发布了新的文献求助10
11秒前
11秒前
可爱的函函应助赤邪采纳,获得10
12秒前
义气的傲松完成签到,获得积分20
12秒前
张zi完成签到,获得积分10
12秒前
wtg发布了新的文献求助10
13秒前
法一完成签到 ,获得积分10
13秒前
充电宝应助ysl采纳,获得30
14秒前
14秒前
诸葛语蝶完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808