亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DCSR: Dilated Convolutions for Single Image Super-Resolution

计算机科学 卷积(计算机科学) 特征(语言学) 图像分辨率 像素 人工智能 算法 图像(数学) 卷积神经网络 一般化 计算复杂性理论 分辨率(逻辑) 模式识别(心理学) 领域(数学) 数学 人工神经网络 数学分析 语言学 哲学 纯数学
作者
Zhendong Zhang,Xinran Wang,Cheolkon Jung
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 1625-1635 被引量:176
标识
DOI:10.1109/tip.2018.2877483
摘要

Dilated convolutions support expanding receptive field without parameter exploration or resolution loss, which turn out to be suitable for pixel-level prediction problems. In this paper, we propose multiscale single image super-resolution (SR) based on dilated convolutions. We adopt dilated convolutions to expand the receptive field size without incurring additional computational complexity. We mix standard convolutions and dilated convolutions in each layer, called mixed convolutions, i.e., in the mixed convolutional layer, and the feature extracted by dilated convolutions and standard convolutions are concatenated. We theoretically analyze the receptive field and intensity of mixed convolutions to discover their role in SR. Mixed convolutions remove blind spots and capture the correlation between low-resolution (LR) and high-resolution (HR) image pairs successfully, thus achieving good generalization ability. We verify those properties of mixed convolutions by training 5-layer and 10-layer networks. We also train a 20-layer deep network to compare the performance of the proposed method with those of the state-of-the-art ones. Moreover, we jointly learn maps with different scales from a LR image to its HR one in a single network. Experimental results demonstrate that the proposed method outperforms the state-of-the-art ones in terms of PSNR and SSIM, especially for a large-scale factor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助YUkiii采纳,获得10
4秒前
10秒前
lawang发布了新的文献求助10
14秒前
bono完成签到 ,获得积分10
21秒前
CC完成签到,获得积分10
21秒前
34秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
ceeray23应助科研通管家采纳,获得10
39秒前
ceeray23应助科研通管家采纳,获得10
39秒前
CodeCraft应助科研通管家采纳,获得10
40秒前
ceeray23应助科研通管家采纳,获得10
40秒前
mingjiang发布了新的文献求助10
40秒前
mingjiang完成签到,获得积分10
55秒前
kuoping完成签到,获得积分0
1分钟前
哼哼啊嗯哼啊完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
YUkiii发布了新的文献求助10
2分钟前
YUkiii完成签到,获得积分10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
4分钟前
jin666发布了新的文献求助10
4分钟前
在水一方应助jin666采纳,获得10
4分钟前
meeteryu完成签到,获得积分10
4分钟前
Orange应助yao采纳,获得10
4分钟前
caspar完成签到,获得积分10
4分钟前
李爱国应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
4分钟前
小高想去浙大读博完成签到 ,获得积分10
4分钟前
yao发布了新的文献求助10
4分钟前
5分钟前
yao完成签到,获得积分10
5分钟前
六六完成签到 ,获得积分10
5分钟前
5分钟前
嘻嘻完成签到,获得积分10
5分钟前
5分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650979
求助须知:如何正确求助?哪些是违规求助? 4782454
关于积分的说明 15052860
捐赠科研通 4809757
什么是DOI,文献DOI怎么找? 2572566
邀请新用户注册赠送积分活动 1528583
关于科研通互助平台的介绍 1487585