DCSR: Dilated Convolutions for Single Image Super-Resolution

计算机科学 卷积(计算机科学) 特征(语言学) 图像分辨率 像素 人工智能 算法 图像(数学) 卷积神经网络 一般化 计算复杂性理论 分辨率(逻辑) 模式识别(心理学) 领域(数学) 数学 人工神经网络 数学分析 语言学 哲学 纯数学
作者
Zhendong Zhang,Xinran Wang,Cheolkon Jung
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 1625-1635 被引量:176
标识
DOI:10.1109/tip.2018.2877483
摘要

Dilated convolutions support expanding receptive field without parameter exploration or resolution loss, which turn out to be suitable for pixel-level prediction problems. In this paper, we propose multiscale single image super-resolution (SR) based on dilated convolutions. We adopt dilated convolutions to expand the receptive field size without incurring additional computational complexity. We mix standard convolutions and dilated convolutions in each layer, called mixed convolutions, i.e., in the mixed convolutional layer, and the feature extracted by dilated convolutions and standard convolutions are concatenated. We theoretically analyze the receptive field and intensity of mixed convolutions to discover their role in SR. Mixed convolutions remove blind spots and capture the correlation between low-resolution (LR) and high-resolution (HR) image pairs successfully, thus achieving good generalization ability. We verify those properties of mixed convolutions by training 5-layer and 10-layer networks. We also train a 20-layer deep network to compare the performance of the proposed method with those of the state-of-the-art ones. Moreover, we jointly learn maps with different scales from a LR image to its HR one in a single network. Experimental results demonstrate that the proposed method outperforms the state-of-the-art ones in terms of PSNR and SSIM, especially for a large-scale factor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助xiayiyi采纳,获得10
1秒前
Jasper应助小郭子采纳,获得10
1秒前
暴躁的夏烟应助SID采纳,获得10
1秒前
kitty完成签到,获得积分10
1秒前
wu完成签到,获得积分10
1秒前
1351567822应助xueshu采纳,获得50
1秒前
1秒前
Jasper应助xmy采纳,获得10
1秒前
LLL完成签到,获得积分10
2秒前
荣荣发布了新的文献求助10
2秒前
2秒前
Jasper应助LXF采纳,获得10
2秒前
2秒前
脑洞疼应助奥润之采纳,获得10
3秒前
yourenpkma123完成签到,获得积分10
3秒前
3秒前
科目三应助zjr@keyantong采纳,获得10
3秒前
555发布了新的文献求助10
3秒前
聪明帅哥发布了新的文献求助10
4秒前
4秒前
YIQING发布了新的文献求助30
4秒前
喵喵发布了新的文献求助10
5秒前
欢乐谷完成签到,获得积分10
5秒前
火星上的摩托完成签到,获得积分10
5秒前
orixero应助dumplong采纳,获得10
6秒前
www发布了新的文献求助10
7秒前
小羊耶啵发布了新的文献求助20
7秒前
王jh完成签到 ,获得积分10
7秒前
香蕉觅云应助马成双采纳,获得10
7秒前
陈先生de猫完成签到,获得积分20
7秒前
sc完成签到,获得积分10
7秒前
顾矜应助搔扒采纳,获得10
7秒前
3093284979完成签到,获得积分10
7秒前
完美世界应助H星科23456采纳,获得10
7秒前
8秒前
8秒前
SciGPT应助gaochanglu采纳,获得10
10秒前
10秒前
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721