DCSR: Dilated Convolutions for Single Image Super-Resolution

计算机科学 卷积(计算机科学) 特征(语言学) 图像分辨率 像素 人工智能 算法 图像(数学) 卷积神经网络 一般化 计算复杂性理论 分辨率(逻辑) 模式识别(心理学) 领域(数学) 数学 人工神经网络 数学分析 语言学 哲学 纯数学
作者
Zhendong Zhang,Xinran Wang,Cheolkon Jung
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 1625-1635 被引量:176
标识
DOI:10.1109/tip.2018.2877483
摘要

Dilated convolutions support expanding receptive field without parameter exploration or resolution loss, which turn out to be suitable for pixel-level prediction problems. In this paper, we propose multiscale single image super-resolution (SR) based on dilated convolutions. We adopt dilated convolutions to expand the receptive field size without incurring additional computational complexity. We mix standard convolutions and dilated convolutions in each layer, called mixed convolutions, i.e., in the mixed convolutional layer, and the feature extracted by dilated convolutions and standard convolutions are concatenated. We theoretically analyze the receptive field and intensity of mixed convolutions to discover their role in SR. Mixed convolutions remove blind spots and capture the correlation between low-resolution (LR) and high-resolution (HR) image pairs successfully, thus achieving good generalization ability. We verify those properties of mixed convolutions by training 5-layer and 10-layer networks. We also train a 20-layer deep network to compare the performance of the proposed method with those of the state-of-the-art ones. Moreover, we jointly learn maps with different scales from a LR image to its HR one in a single network. Experimental results demonstrate that the proposed method outperforms the state-of-the-art ones in terms of PSNR and SSIM, especially for a large-scale factor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十九岁的时差完成签到,获得积分10
刚刚
小蘑菇应助Jianhong采纳,获得10
1秒前
1秒前
一棵树完成签到,获得积分10
1秒前
36456657应助Katyusha采纳,获得20
1秒前
2秒前
星星完成签到,获得积分10
2秒前
科研通AI6应助敬之采纳,获得10
2秒前
3秒前
3秒前
mzmz发布了新的文献求助10
3秒前
林昊完成签到,获得积分10
3秒前
4秒前
复苏应助郭mm采纳,获得10
4秒前
samsara完成签到 ,获得积分10
4秒前
铭铭铭完成签到,获得积分10
4秒前
小米应助郭mm采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
我是老大应助九bai采纳,获得10
4秒前
5秒前
5秒前
XI_2001发布了新的文献求助10
5秒前
5秒前
5秒前
xW12123完成签到,获得积分10
6秒前
6秒前
6秒前
季秋十二发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
爱学习的小燕子完成签到,获得积分10
7秒前
7秒前
dato12423完成签到,获得积分10
7秒前
思源应助百事可乐采纳,获得10
7秒前
夏夏发布了新的文献求助10
7秒前
lu完成签到,获得积分10
7秒前
十七完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210