材料科学
微观结构
韧性
马氏体
复合材料
钛合金
延展性(地球科学)
冶金
蠕动
合金
作者
Rushikesh Sabban,Sumit Bahl,Kaushik Chatterjee,Satyam Suwas
标识
DOI:10.1016/j.actamat.2018.09.064
摘要
Abstract A bimodal globularized microstructure in contrast to martensitic laths is known to impart high strength and toughness in Ti-6Al-4V. Heat treatment for the phase transformation of the laths to the globularized microstructure must be preceded by plastic deformation. This work reports an innovative strategy to obtain the bimodal microstructure consisting of globular α in additively manufactured Ti-6Al-4V alloy by heat treatment alone. The heat treatment schedule involves repeated thermal cycling close to but below the β transus temperature to form globular α eliminating the need for plastic deformation prior to heat treatment. A new mechanism of globularization other than known in literature is proposed to explain the formation of globular α. The inherent dislocation sub-structure of the martensitic laths initiates globularization by thermal grooving and boundary splitting but is unable to completely globularize the microstructure. Mechanisms such as cylinderization and edge spheroidization also do not lead to globularization. The purposefully designed thermal cycling causes oscillations in the volume fractions of α and β phases that in synergism with the slow cooling segments of the cycle globularize the α phase by epitaxial growth. The bimodal microstructure thus produced led to a significant improvement in the ductility by 80% and the toughness by 66%, which are desirable for structural applications. Furthermore, beneficial compressive stresses were generated in the alloy because of cyclic heat treatment. It is envisaged that the exceptional combination of mechanical properties observed here will lead to the fabrication of SLM printed Ti-6Al-4V parts that could leverage the advantages of additive manufacturing with material properties that are comparable to those obtained by conventional fabrication routes.
科研通智能强力驱动
Strongly Powered by AbleSci AI