Microstructure Determines Water and Salt Permeation in Commercial Ion-Exchange Membranes

渗透 微观结构 材料科学 盐(化学) 化学工程 离子交换 离子 纳米技术 化学 复合材料 有机化学 遗传学 生物 工程类
作者
Ryan Kingsbury,Shan Zhu,Sophie Flotron,Orlando Coronell
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:10 (46): 39745-39756 被引量:98
标识
DOI:10.1021/acsami.8b14494
摘要

Ion-exchange membrane (IEM) performance in electrochemical processes such as fuel cells, redox flow batteries, or reverse electrodialysis (RED) is typically quantified through membrane selectivity and conductivity, which together determine the energy efficiency. However, water and co-ion transport (i.e., osmosis and salt diffusion/fuel crossover) also impact energy efficiency by allowing uncontrolled mixing of the electrolyte solutions to occur. For example, in RED with hypersaline water sources, uncontrolled mixing consumes 20-50% of the available mixing energy. Thus, in addition to high selectivity and high conductivity, it is desirable for IEMs to have low permeability to water and salt to minimize energy losses. Unfortunately, there is very little quantitative water and salt permeability information available for commercial IEMs, making it difficult to select the best membrane for a particular application. Accordingly, we measured the water and salt transport properties of 20 commercial IEMs and analyzed the relationships between permeability, diffusion, and partitioning according to the solution-diffusion model. We found that water and salt permeance vary over several orders of magnitude among commercial IEMs, making some membranes better suited than others to electrochemical processes that involve high salt concentrations and/or concentration gradients. Water and salt diffusion coefficients were found to be the principal factors contributing to the differences in permeance among commercial IEMs. We also observed that water and salt permeability were highly correlated to one another for all IEMs studied, regardless of polymer type or reinforcement. This finding suggests that transport of mobile salt in IEMs is governed by the microstructure of the membrane and provides clear evidence that mobile salt does not interact strongly with polymer chains in highly swollen IEMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
linguo完成签到,获得积分10
刚刚
刚刚
危机的蜜粉完成签到,获得积分10
1秒前
安详靖巧完成签到,获得积分10
1秒前
小饼干完成签到,获得积分10
2秒前
nini完成签到,获得积分20
2秒前
小蘑菇应助Imwang采纳,获得10
2秒前
2秒前
万能图书馆应助TheYNJ采纳,获得10
2秒前
2秒前
3秒前
3秒前
Negan关注了科研通微信公众号
3秒前
慕青应助眯眯眼的枕头采纳,获得10
3秒前
3秒前
一手抓爆乌云完成签到,获得积分10
3秒前
zf完成签到,获得积分10
3秒前
lgw发布了新的文献求助10
4秒前
AI完成签到 ,获得积分10
4秒前
超级丸子完成签到,获得积分10
4秒前
kiwi发布了新的文献求助10
4秒前
余与鱼完成签到,获得积分10
4秒前
抹茶完成签到 ,获得积分10
5秒前
Yong完成签到,获得积分10
5秒前
我是老大应助Eliauk采纳,获得10
5秒前
6秒前
在水一方应助七七采纳,获得10
6秒前
科研通AI6应助linn采纳,获得10
6秒前
安详靖巧发布了新的文献求助10
6秒前
现代一德发布了新的文献求助10
6秒前
wzx发布了新的文献求助10
7秒前
传奇3应助焕颜采纳,获得10
7秒前
顺利毕业完成签到,获得积分10
7秒前
导师老八发布了新的文献求助10
7秒前
落 风完成签到,获得积分10
8秒前
胡一凡发布了新的文献求助10
8秒前
赵yy应助好好学习采纳,获得10
8秒前
水星完成签到,获得积分10
9秒前
852应助宁子采纳,获得10
9秒前
10秒前
高分求助中
美国药典 2000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5239316
求助须知:如何正确求助?哪些是违规求助? 4406741
关于积分的说明 13715300
捐赠科研通 4275149
什么是DOI,文献DOI怎么找? 2345932
邀请新用户注册赠送积分活动 1343067
关于科研通互助平台的介绍 1301010