Evolutionary Deep Learning with Extended Kalman Filter for Effective Prediction Modeling and Efficient Data Assimilation

扩展卡尔曼滤波器 人工智能 计算机科学 稳健性(进化) 数据同化 深信不疑网络 机器学习 卡尔曼滤波器 深度学习 人工神经网络 缺少数据 数据挖掘 生物化学 基因 物理 气象学 化学
作者
Li Qiao,Zheng Yi Wu,Atiqur Rahman
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:33 (3) 被引量:16
标识
DOI:10.1061/(asce)cp.1943-5487.0000835
摘要

With increasing concerns about infrastructure sustainability, ubiquitous sensing is an integral part of smart infrastructure in the context of smart cities. It generates large data sets containing hidden patterns and intelligence, which must be effectively extracted to derive actionable wisdom to support decision-making. Thus, it is imperative to develop intelligent data analytics to extract intelligence from data. Various data analysis methods have been developed in recent decades, but the lack of robustness and data assimilation features prevents the previously developed methods from yielding adequately accurate results for time-variant data sets over a long duration. This paper proposes an improved deep belief network (DBN), a deep machine learning model, which is integrated with genetic algorithms (GAs) and the extended Kalman filter (EKF) for effective predictive modeling and efficient data assimilation. The proposed method uses a genetic algorithm to optimize the configuration of the DBN for the given problem. Then the DBN is trained in two steps, namely pretraining layer by layer and fine-tuning with either a conventional back propagation (BP) algorithm, namely BP-DBN, or an EKF that is generalized with a new algorithm for calculating the Jacobian matrix for many-layer DBNs, namely EKF-DBN, which was tested together with BP-DBN and a recurrence neural network (RNN) on three real cases with and without data assimilation. The comparison results showed that the EKF-DBN outperforms BP-DBN and RNN in both computational efficiency and accuracy for predictive modeling. In addition, EKF-DBN generates the error covariance matrix that enables the calculation of prediction confidence interval. This can be used to detect the anomalies in a real system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wallonce发布了新的文献求助10
2秒前
爆米花应助张Morningstar采纳,获得10
2秒前
研友_LBRNbL关注了科研通微信公众号
3秒前
3秒前
天天快乐应助乐观囧采纳,获得10
3秒前
慕青应助Ly采纳,获得10
6秒前
Lyncus给研友_enPlon的求助进行了留言
8秒前
Elaine完成签到,获得积分10
8秒前
Bunny完成签到 ,获得积分10
9秒前
9秒前
10秒前
一天一个苹果儿完成签到 ,获得积分10
12秒前
楚天完成签到,获得积分10
13秒前
13秒前
嘀哩呱啦啦完成签到 ,获得积分10
16秒前
zxn发布了新的文献求助10
18秒前
25秒前
25秒前
一只小猫咪呀汪汪完成签到 ,获得积分10
26秒前
27秒前
啪唧完成签到,获得积分10
27秒前
27秒前
28秒前
辅助但上分完成签到,获得积分20
30秒前
杳鸢应助YY采纳,获得10
30秒前
潇洒清炎发布了新的文献求助10
30秒前
啪唧发布了新的文献求助10
31秒前
黄林旋发布了新的文献求助10
31秒前
31秒前
32秒前
cyy发布了新的文献求助10
33秒前
34秒前
科研通AI2S应助ywj采纳,获得10
34秒前
QDU应助外向千儿采纳,获得10
36秒前
我是老大应助黄林旋采纳,获得10
36秒前
丘比特应助柳叶刀小猪采纳,获得10
36秒前
36秒前
36秒前
阿宋发布了新的文献求助10
37秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3298487
求助须知:如何正确求助?哪些是违规求助? 2933495
关于积分的说明 8463631
捐赠科研通 2606483
什么是DOI,文献DOI怎么找? 1423164
科研通“疑难数据库(出版商)”最低求助积分说明 661589
邀请新用户注册赠送积分活动 644998