Evolutionary Deep Learning with Extended Kalman Filter for Effective Prediction Modeling and Efficient Data Assimilation

扩展卡尔曼滤波器 人工智能 计算机科学 稳健性(进化) 数据同化 深信不疑网络 机器学习 卡尔曼滤波器 深度学习 人工神经网络 缺少数据 数据挖掘 生物化学 基因 物理 气象学 化学
作者
Li Qiao,Zheng Yi Wu,Atiqur Rahman
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:33 (3) 被引量:16
标识
DOI:10.1061/(asce)cp.1943-5487.0000835
摘要

With increasing concerns about infrastructure sustainability, ubiquitous sensing is an integral part of smart infrastructure in the context of smart cities. It generates large data sets containing hidden patterns and intelligence, which must be effectively extracted to derive actionable wisdom to support decision-making. Thus, it is imperative to develop intelligent data analytics to extract intelligence from data. Various data analysis methods have been developed in recent decades, but the lack of robustness and data assimilation features prevents the previously developed methods from yielding adequately accurate results for time-variant data sets over a long duration. This paper proposes an improved deep belief network (DBN), a deep machine learning model, which is integrated with genetic algorithms (GAs) and the extended Kalman filter (EKF) for effective predictive modeling and efficient data assimilation. The proposed method uses a genetic algorithm to optimize the configuration of the DBN for the given problem. Then the DBN is trained in two steps, namely pretraining layer by layer and fine-tuning with either a conventional back propagation (BP) algorithm, namely BP-DBN, or an EKF that is generalized with a new algorithm for calculating the Jacobian matrix for many-layer DBNs, namely EKF-DBN, which was tested together with BP-DBN and a recurrence neural network (RNN) on three real cases with and without data assimilation. The comparison results showed that the EKF-DBN outperforms BP-DBN and RNN in both computational efficiency and accuracy for predictive modeling. In addition, EKF-DBN generates the error covariance matrix that enables the calculation of prediction confidence interval. This can be used to detect the anomalies in a real system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
失眠台灯完成签到,获得积分20
刚刚
shengshiyu完成签到,获得积分10
刚刚
彭于晏应助自由的白开水采纳,获得10
2秒前
dzl发布了新的文献求助10
3秒前
小马完成签到,获得积分20
3秒前
NATURECATCHER发布了新的文献求助10
3秒前
陈科研完成签到,获得积分10
3秒前
Ava应助糟糕的铁锤采纳,获得10
4秒前
Zyl完成签到 ,获得积分10
4秒前
5秒前
852应助杨迪楠采纳,获得10
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
Akim应助念安采纳,获得10
7秒前
8秒前
youda完成签到 ,获得积分10
8秒前
乐乐应助满意小丸子采纳,获得10
8秒前
8秒前
9秒前
9秒前
yang发布了新的文献求助10
9秒前
大模型应助Herry-Jeremy采纳,获得10
9秒前
斯文败类应助牧瞻采纳,获得10
10秒前
KaleighCarlos发布了新的文献求助10
10秒前
xxx发布了新的文献求助10
10秒前
香蕉从寒完成签到,获得积分10
11秒前
11秒前
123完成签到 ,获得积分10
11秒前
wkkky发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
青椒超人完成签到,获得积分20
11秒前
sssss发布了新的文献求助10
12秒前
CodeCraft应助Aurora采纳,获得10
12秒前
852应助4born采纳,获得10
12秒前
奋斗的蜗牛完成签到,获得积分10
13秒前
achulw发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784462
求助须知:如何正确求助?哪些是违规求助? 5682526
关于积分的说明 15464250
捐赠科研通 4913580
什么是DOI,文献DOI怎么找? 2644772
邀请新用户注册赠送积分活动 1592662
关于科研通互助平台的介绍 1547148