Evolutionary Deep Learning with Extended Kalman Filter for Effective Prediction Modeling and Efficient Data Assimilation

扩展卡尔曼滤波器 人工智能 计算机科学 稳健性(进化) 数据同化 深信不疑网络 机器学习 卡尔曼滤波器 深度学习 人工神经网络 缺少数据 数据挖掘 生物化学 基因 物理 气象学 化学
作者
Li Qiao,Zheng Yi Wu,Atiqur Rahman
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:33 (3) 被引量:16
标识
DOI:10.1061/(asce)cp.1943-5487.0000835
摘要

With increasing concerns about infrastructure sustainability, ubiquitous sensing is an integral part of smart infrastructure in the context of smart cities. It generates large data sets containing hidden patterns and intelligence, which must be effectively extracted to derive actionable wisdom to support decision-making. Thus, it is imperative to develop intelligent data analytics to extract intelligence from data. Various data analysis methods have been developed in recent decades, but the lack of robustness and data assimilation features prevents the previously developed methods from yielding adequately accurate results for time-variant data sets over a long duration. This paper proposes an improved deep belief network (DBN), a deep machine learning model, which is integrated with genetic algorithms (GAs) and the extended Kalman filter (EKF) for effective predictive modeling and efficient data assimilation. The proposed method uses a genetic algorithm to optimize the configuration of the DBN for the given problem. Then the DBN is trained in two steps, namely pretraining layer by layer and fine-tuning with either a conventional back propagation (BP) algorithm, namely BP-DBN, or an EKF that is generalized with a new algorithm for calculating the Jacobian matrix for many-layer DBNs, namely EKF-DBN, which was tested together with BP-DBN and a recurrence neural network (RNN) on three real cases with and without data assimilation. The comparison results showed that the EKF-DBN outperforms BP-DBN and RNN in both computational efficiency and accuracy for predictive modeling. In addition, EKF-DBN generates the error covariance matrix that enables the calculation of prediction confidence interval. This can be used to detect the anomalies in a real system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助Biggest采纳,获得10
刚刚
4秒前
4秒前
111完成签到 ,获得积分10
6秒前
8秒前
小丸子发布了新的文献求助10
8秒前
Bruce发布了新的文献求助30
10秒前
11秒前
Jasper应助lxr采纳,获得10
11秒前
王大壮完成签到,获得积分10
12秒前
14秒前
15秒前
16秒前
17秒前
Biggest发布了新的文献求助10
18秒前
18秒前
勤奋的晋鹏完成签到,获得积分10
19秒前
19秒前
19秒前
19秒前
20秒前
lsx发布了新的文献求助10
20秒前
20秒前
Ivia给Ivia的求助进行了留言
21秒前
21秒前
小马奔奔发布了新的文献求助10
22秒前
VIVI发布了新的文献求助10
22秒前
24秒前
24秒前
24秒前
24秒前
月下荷花发布了新的文献求助10
25秒前
充电宝应助啊啊采纳,获得10
27秒前
脑洞疼应助啊啊采纳,获得10
27秒前
顾矜应助王世卉采纳,获得10
27秒前
Bio应助guozizi采纳,获得30
27秒前
28秒前
29秒前
嘉木完成签到 ,获得积分10
29秒前
希望天下0贩的0应助shinn采纳,获得10
32秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980457
求助须知:如何正确求助?哪些是违规求助? 3524399
关于积分的说明 11221363
捐赠科研通 3261846
什么是DOI,文献DOI怎么找? 1800921
邀请新用户注册赠送积分活动 879507
科研通“疑难数据库(出版商)”最低求助积分说明 807283