New research methods for vegetation information extraction based on visible light remote sensing images from an unmanned aerial vehicle (UAV)

植被(病理学) 遥感 增强植被指数 归一化差异植被指数 植被指数 干旱 环境科学 灰度 植被分类 像素 叶面积指数 地理 计算机科学 地质学 人工智能 生态学 医学 病理 古生物学 生物
作者
Xianlong Zhang,Zhang Fei,Yaxiao Qi,Laifei Deng,Xiaolong Wang,Shengtian Yang
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:78: 215-226 被引量:97
标识
DOI:10.1016/j.jag.2019.01.001
摘要

Currently, many remote sensing images of the vegetation index being used have disadvantages, because of high cost, long cycles, and low resolution. Thus, it is difficult to extract and analyse vegetation information in the field. A vegetation index based on visible light images from an unmanned aerial vehicle (UAV) has the advantages of fast image acquisition and high ground resolution, which is superior to traditional remote sensing. However, the vegetation coverage in arid and semi-arid areas is low, and the soil background has a great impact on the common visible vegetation index. The real-time extraction and analysis of the index vegetation information can easily result in big errors. Therefore, according to the construction principle of the green-red vegetation index (GRVI) and modified green-red vegetation index (MGRVI), a new green-red vegetation index (NGRVI) is proposed in this study. First, the newly constructed index and several published indices are used to extract visible light images and generate greyscale images for each of the visible light vegetation indices. Then, the threshold of vegetation and non-vegetation pixel classification is established according to the method of iterative threshold, and the optimal threshold is used to extract the vegetation information from the greyscale images of each of the visible light vegetation indices. Finally, the accuracy difference in vegetation information extraction between the newly constructed and several published indices is compared. The results show that the precision of vegetation information extraction by NGRVI is higher than that of other visible light band vegetation indices; the kappa coefficient is 0.82, and the classification accuracy reaches near-complete consistency. To verify the accuracy of the NGRVI, one image from the same period was selected, and the vegetation information was extracted using the same method. The NGRVI based on UAV visible light images can accurately extract the vegetation information in arid and semi-arid areas, and the extraction accuracy can reach more than 90%. To summarize, NGRVI can accurately and effectively reflect the vegetation information in arid and semi-arid areas and become an important technical means for retrieving biological and physical parameters using visible light images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Carsen完成签到,获得积分10
1秒前
英吉利25发布了新的文献求助10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
显眼包发布了新的文献求助10
2秒前
---发布了新的文献求助10
3秒前
4秒前
YESKY完成签到,获得积分10
4秒前
6秒前
研友_CCQ_M完成签到,获得积分10
6秒前
Aurora完成签到 ,获得积分10
6秒前
笑点低的幼荷完成签到,获得积分10
7秒前
Jasper应助洁净思枫采纳,获得10
8秒前
陈宗琴发布了新的文献求助20
8秒前
9秒前
WB87应助大海捞针2025采纳,获得10
9秒前
10秒前
yuzi发布了新的文献求助20
10秒前
11秒前
泡沫完成签到,获得积分10
11秒前
虚心的小兔子给等等的求助进行了留言
12秒前
爆米花应助小哈采纳,获得10
12秒前
xiaohuang完成签到,获得积分10
15秒前
aSTRAL发布了新的文献求助10
16秒前
洁净思枫完成签到,获得积分10
16秒前
17秒前
18秒前
19秒前
20秒前
英姑应助我爱酸菜鱼采纳,获得10
20秒前
20秒前
NexusExplorer应助椰子采纳,获得10
21秒前
xiaohuang发布了新的文献求助10
22秒前
吖嘿吖嘿发布了新的文献求助10
25秒前
洁净思枫发布了新的文献求助10
25秒前
青城山下小星瞳完成签到,获得积分10
26秒前
范琴琴完成签到 ,获得积分10
26秒前
幸福镜子完成签到,获得积分10
27秒前
mailei应助大海捞针2025采纳,获得10
27秒前
HHHHTTTT完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434405
求助须知:如何正确求助?哪些是违规求助? 4546699
关于积分的说明 14203825
捐赠科研通 4466675
什么是DOI,文献DOI怎么找? 2448251
邀请新用户注册赠送积分活动 1439079
关于科研通互助平台的介绍 1415956