New research methods for vegetation information extraction based on visible light remote sensing images from an unmanned aerial vehicle (UAV)

植被(病理学) 遥感 增强植被指数 归一化差异植被指数 植被指数 干旱 环境科学 灰度 植被分类 像素 叶面积指数 地理 计算机科学 地质学 人工智能 生态学 医学 病理 古生物学 生物
作者
Xianlong Zhang,Zhang Fei,Yaxiao Qi,Laifei Deng,Xiaolong Wang,Shengtian Yang
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:78: 215-226 被引量:82
标识
DOI:10.1016/j.jag.2019.01.001
摘要

Currently, many remote sensing images of the vegetation index being used have disadvantages, because of high cost, long cycles, and low resolution. Thus, it is difficult to extract and analyse vegetation information in the field. A vegetation index based on visible light images from an unmanned aerial vehicle (UAV) has the advantages of fast image acquisition and high ground resolution, which is superior to traditional remote sensing. However, the vegetation coverage in arid and semi-arid areas is low, and the soil background has a great impact on the common visible vegetation index. The real-time extraction and analysis of the index vegetation information can easily result in big errors. Therefore, according to the construction principle of the green-red vegetation index (GRVI) and modified green-red vegetation index (MGRVI), a new green-red vegetation index (NGRVI) is proposed in this study. First, the newly constructed index and several published indices are used to extract visible light images and generate greyscale images for each of the visible light vegetation indices. Then, the threshold of vegetation and non-vegetation pixel classification is established according to the method of iterative threshold, and the optimal threshold is used to extract the vegetation information from the greyscale images of each of the visible light vegetation indices. Finally, the accuracy difference in vegetation information extraction between the newly constructed and several published indices is compared. The results show that the precision of vegetation information extraction by NGRVI is higher than that of other visible light band vegetation indices; the kappa coefficient is 0.82, and the classification accuracy reaches near-complete consistency. To verify the accuracy of the NGRVI, one image from the same period was selected, and the vegetation information was extracted using the same method. The NGRVI based on UAV visible light images can accurately extract the vegetation information in arid and semi-arid areas, and the extraction accuracy can reach more than 90%. To summarize, NGRVI can accurately and effectively reflect the vegetation information in arid and semi-arid areas and become an important technical means for retrieving biological and physical parameters using visible light images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cczltdy完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
林懋发布了新的文献求助10
2秒前
李锐发布了新的文献求助10
2秒前
3秒前
爷爷完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
3秒前
SW发布了新的文献求助10
4秒前
Bling婉发布了新的文献求助10
4秒前
iNk应助Wacky采纳,获得20
4秒前
orixero应助科研小白采纳,获得10
5秒前
NexusExplorer应助stretchability采纳,获得10
5秒前
liz完成签到,获得积分10
5秒前
无花果应助靓丽的熠彤采纳,获得10
5秒前
周久完成签到 ,获得积分10
5秒前
7秒前
fanxufu发布了新的文献求助10
7秒前
8秒前
kohu发布了新的文献求助10
8秒前
ding应助jinjin采纳,获得10
8秒前
Valeria完成签到,获得积分10
8秒前
WTQ关闭了WTQ文献求助
9秒前
核桃应助儒雅曼云采纳,获得10
9秒前
研友_VZG7GZ应助Lydia采纳,获得10
9秒前
情怀应助机灵的怀绿采纳,获得10
9秒前
TTTT完成签到,获得积分10
9秒前
fbwg发布了新的文献求助50
9秒前
iNk应助爱学习的猫采纳,获得10
10秒前
小不完成签到 ,获得积分10
10秒前
乐乐应助李佳慧采纳,获得10
10秒前
思玉完成签到,获得积分10
10秒前
linlin完成签到,获得积分10
10秒前
ding应助AHS采纳,获得10
10秒前
10秒前
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009765
求助须知:如何正确求助?哪些是违规求助? 3549723
关于积分的说明 11303208
捐赠科研通 3284239
什么是DOI,文献DOI怎么找? 1810545
邀请新用户注册赠送积分活动 886356
科研通“疑难数据库(出版商)”最低求助积分说明 811355