New research methods for vegetation information extraction based on visible light remote sensing images from an unmanned aerial vehicle (UAV)

植被(病理学) 遥感 增强植被指数 归一化差异植被指数 植被指数 干旱 环境科学 灰度 植被分类 像素 叶面积指数 地理 计算机科学 地质学 人工智能 生态学 古生物学 病理 生物 医学
作者
Xianlong Zhang,Zhang Fei,Yaxiao Qi,Laifei Deng,Xiaolong Wang,Shengtian Yang
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:78: 215-226 被引量:82
标识
DOI:10.1016/j.jag.2019.01.001
摘要

Currently, many remote sensing images of the vegetation index being used have disadvantages, because of high cost, long cycles, and low resolution. Thus, it is difficult to extract and analyse vegetation information in the field. A vegetation index based on visible light images from an unmanned aerial vehicle (UAV) has the advantages of fast image acquisition and high ground resolution, which is superior to traditional remote sensing. However, the vegetation coverage in arid and semi-arid areas is low, and the soil background has a great impact on the common visible vegetation index. The real-time extraction and analysis of the index vegetation information can easily result in big errors. Therefore, according to the construction principle of the green-red vegetation index (GRVI) and modified green-red vegetation index (MGRVI), a new green-red vegetation index (NGRVI) is proposed in this study. First, the newly constructed index and several published indices are used to extract visible light images and generate greyscale images for each of the visible light vegetation indices. Then, the threshold of vegetation and non-vegetation pixel classification is established according to the method of iterative threshold, and the optimal threshold is used to extract the vegetation information from the greyscale images of each of the visible light vegetation indices. Finally, the accuracy difference in vegetation information extraction between the newly constructed and several published indices is compared. The results show that the precision of vegetation information extraction by NGRVI is higher than that of other visible light band vegetation indices; the kappa coefficient is 0.82, and the classification accuracy reaches near-complete consistency. To verify the accuracy of the NGRVI, one image from the same period was selected, and the vegetation information was extracted using the same method. The NGRVI based on UAV visible light images can accurately extract the vegetation information in arid and semi-arid areas, and the extraction accuracy can reach more than 90%. To summarize, NGRVI can accurately and effectively reflect the vegetation information in arid and semi-arid areas and become an important technical means for retrieving biological and physical parameters using visible light images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kelly完成签到,获得积分20
刚刚
背后归尘完成签到,获得积分10
8秒前
12秒前
充电宝应助小熊采纳,获得10
13秒前
冷艳的小懒虫完成签到 ,获得积分10
13秒前
Lucas应助松松采纳,获得20
16秒前
hhj完成签到,获得积分20
17秒前
xu完成签到 ,获得积分10
17秒前
22秒前
轨迹给轨迹的求助进行了留言
24秒前
卜念发布了新的文献求助10
28秒前
糟糕的富应助郝宝真采纳,获得10
28秒前
29秒前
29秒前
勿庸完成签到,获得积分10
32秒前
甄道之发布了新的文献求助10
33秒前
安详初蓝发布了新的文献求助50
33秒前
34秒前
hxb完成签到,获得积分10
35秒前
憨憨完成签到 ,获得积分20
35秒前
李健应助晶晶妹妹采纳,获得10
36秒前
yk完成签到 ,获得积分10
38秒前
满意的柏柳完成签到,获得积分10
38秒前
38秒前
王提发布了新的文献求助30
40秒前
杨好圆完成签到,获得积分10
40秒前
细心天德完成签到 ,获得积分10
42秒前
YYY666完成签到,获得积分10
42秒前
一二三木偶人完成签到,获得积分10
43秒前
44秒前
44秒前
稀罕你发布了新的文献求助10
44秒前
Ran完成签到,获得积分10
45秒前
45秒前
xianyu完成签到,获得积分20
45秒前
失眠墨镜完成签到,获得积分10
45秒前
Harry应助科研通管家采纳,获得20
46秒前
CipherSage应助科研通管家采纳,获得10
46秒前
陈雷应助科研通管家采纳,获得200
46秒前
领导范儿应助科研通管家采纳,获得10
46秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162968
求助须知:如何正确求助?哪些是违规求助? 2813990
关于积分的说明 7902666
捐赠科研通 2473613
什么是DOI,文献DOI怎么找? 1316952
科研通“疑难数据库(出版商)”最低求助积分说明 631546
版权声明 602187