New research methods for vegetation information extraction based on visible light remote sensing images from an unmanned aerial vehicle (UAV)

植被(病理学) 遥感 增强植被指数 归一化差异植被指数 植被指数 干旱 环境科学 灰度 植被分类 像素 叶面积指数 地理 计算机科学 地质学 人工智能 生态学 医学 病理 古生物学 生物
作者
Xianlong Zhang,Zhang Fei,Yaxiao Qi,Laifei Deng,Xiaolong Wang,Shengtian Yang
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:78: 215-226 被引量:97
标识
DOI:10.1016/j.jag.2019.01.001
摘要

Currently, many remote sensing images of the vegetation index being used have disadvantages, because of high cost, long cycles, and low resolution. Thus, it is difficult to extract and analyse vegetation information in the field. A vegetation index based on visible light images from an unmanned aerial vehicle (UAV) has the advantages of fast image acquisition and high ground resolution, which is superior to traditional remote sensing. However, the vegetation coverage in arid and semi-arid areas is low, and the soil background has a great impact on the common visible vegetation index. The real-time extraction and analysis of the index vegetation information can easily result in big errors. Therefore, according to the construction principle of the green-red vegetation index (GRVI) and modified green-red vegetation index (MGRVI), a new green-red vegetation index (NGRVI) is proposed in this study. First, the newly constructed index and several published indices are used to extract visible light images and generate greyscale images for each of the visible light vegetation indices. Then, the threshold of vegetation and non-vegetation pixel classification is established according to the method of iterative threshold, and the optimal threshold is used to extract the vegetation information from the greyscale images of each of the visible light vegetation indices. Finally, the accuracy difference in vegetation information extraction between the newly constructed and several published indices is compared. The results show that the precision of vegetation information extraction by NGRVI is higher than that of other visible light band vegetation indices; the kappa coefficient is 0.82, and the classification accuracy reaches near-complete consistency. To verify the accuracy of the NGRVI, one image from the same period was selected, and the vegetation information was extracted using the same method. The NGRVI based on UAV visible light images can accurately extract the vegetation information in arid and semi-arid areas, and the extraction accuracy can reach more than 90%. To summarize, NGRVI can accurately and effectively reflect the vegetation information in arid and semi-arid areas and become an important technical means for retrieving biological and physical parameters using visible light images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助施宇宙采纳,获得10
1秒前
林一又发布了新的文献求助10
1秒前
不吃鸡蛋完成签到,获得积分10
1秒前
2秒前
Docline完成签到,获得积分10
2秒前
诚心秋珊发布了新的文献求助10
2秒前
2秒前
忐忑的馒头完成签到 ,获得积分10
2秒前
PMME完成签到,获得积分10
2秒前
香蕉觅云应助涵涵采纳,获得10
2秒前
承欢发布了新的文献求助10
2秒前
2秒前
2秒前
懵懂的采梦应助Llllll采纳,获得20
2秒前
qin发布了新的文献求助10
3秒前
痛苦并快乐完成签到 ,获得积分10
3秒前
小费发布了新的文献求助10
3秒前
研友_nxV4m8发布了新的文献求助10
3秒前
NXGXSP778发布了新的文献求助10
3秒前
4秒前
研友_VZG7GZ应助loveuso采纳,获得30
4秒前
猪猪女孩完成签到,获得积分10
4秒前
347完成签到,获得积分10
4秒前
5秒前
7890733发布了新的文献求助10
5秒前
5秒前
星辰大海应助姚yao采纳,获得10
5秒前
5秒前
啦啦啦啦发布了新的文献求助10
6秒前
Fsy应助皮蛋瘦肉粥采纳,获得10
6秒前
秧秧完成签到,获得积分20
6秒前
kuku完成签到,获得积分10
6秒前
科研通AI6应助Leo采纳,获得10
6秒前
6秒前
blm完成签到,获得积分10
7秒前
沉静的难胜完成签到,获得积分10
8秒前
8秒前
ding应助passion采纳,获得30
8秒前
9秒前
热心的冬菱完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5327823
求助须知:如何正确求助?哪些是违规求助? 4467773
关于积分的说明 13902367
捐赠科研通 4360537
什么是DOI,文献DOI怎么找? 2395179
邀请新用户注册赠送积分活动 1388721
关于科研通互助平台的介绍 1359531