A Novel QUIC Traffic Classifier Based on Convolutional Neural Networks

卷积神经网络 计算机科学 交通分类 计算机网络 有效载荷(计算) 深包检验 加密 人工智能 分类器(UML) 超文本传输协议 特征提取 恶意软件 网络数据包 互联网 数据挖掘 计算机安全 万维网
作者
Van Tong,Hai Anh Tran,Sami Souihi,Abdelhamid Mellouk
出处
期刊:Le Centre pour la Communication Scientifique Directe - HAL - Diderot 被引量:85
标识
DOI:10.1109/glocom.2018.8647128
摘要

Nowadays, network traffic classification plays an important role in many fields including network management, intrusion detection system, malware detection system, etc. Most of the previous research works concentrate on features extracted in the non-encrypted network traffic. However, these features are not compatible with all kind of traffic characterization. Google's QUIC protocol (Quick UDP Internet Connection protocol) is implemented in many services of Google. Nevertheless, the emergence of this protocol imposes many obstacles for traffic classification due to the reduction of visibility for operators into network traffic, so the port and payload- based traditional methods cannot be applied to identify the QUIC- based services. To address this issue, we proposed a novel technique for traffic classification based on the convolutional neural network which combines the feature extraction and classification phase into one system. The proposed method uses the flow and packet-based features to improve the performance. In comparison with current methods, the proposed method can detect some kind of QUIC-based services such as Google Hangout Chat, Google Hangout Voice Call, YouTube, File transfer and Google play music. Besides, the proposed method can achieve the microaveraging F1-score of 99.24 percent.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
刚刚
刚刚
orixero应助iii采纳,获得10
1秒前
YU完成签到,获得积分10
1秒前
1秒前
直率的忆南完成签到,获得积分10
1秒前
wanci应助宋宋采纳,获得10
2秒前
谨慎凡柔发布了新的文献求助10
2秒前
2秒前
充电宝应助09chenyun采纳,获得10
3秒前
3秒前
6666666666发布了新的文献求助10
3秒前
4秒前
SEVEN完成签到 ,获得积分10
4秒前
4秒前
4秒前
小高同学完成签到,获得积分10
4秒前
nicholaswk发布了新的文献求助10
5秒前
hang发布了新的文献求助10
5秒前
海派甜心完成签到,获得积分10
5秒前
九天发布了新的文献求助10
5秒前
科研通AI2S应助策策采纳,获得10
6秒前
6秒前
舒适向薇完成签到 ,获得积分10
6秒前
6秒前
我想毕业发布了新的文献求助10
6秒前
小豆完成签到,获得积分10
6秒前
追寻梦之完成签到 ,获得积分10
7秒前
yang完成签到,获得积分10
7秒前
怕孤单的若颜完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
天天完成签到,获得积分10
9秒前
9秒前
小马甲应助sjc采纳,获得10
10秒前
10秒前
su发布了新的文献求助10
10秒前
Fengmin Zhang发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661010
求助须知:如何正确求助?哪些是违规求助? 4836679
关于积分的说明 15093101
捐赠科研通 4819724
什么是DOI,文献DOI怎么找? 2579492
邀请新用户注册赠送积分活动 1533827
关于科研通互助平台的介绍 1492616