计算机科学
水准点(测量)
域适应
适应(眼睛)
人工智能
转化(遗传学)
领域(数学分析)
珊瑚
人工神经网络
深层神经网络
编码(集合论)
深度学习
模式识别(心理学)
机器学习
算法
数学
海洋学
集合(抽象数据类型)
地图学
数学分析
地质学
物理
光学
化学
程序设计语言
基因
地理
分类器(UML)
生物化学
作者
Baochen Sun,Kate Saenko
标识
DOI:10.1007/978-3-319-49409-8_35
摘要
Deep neural networks are able to learn powerful representations from large quantities of labeled input data, however they cannot always generalize well across changes in input distributions. Domain adaptation algorithms have been proposed to compensate for the degradation in performance due to domain shift. In this paper, we address the case when the target domain is unlabeled, requiring unsupervised adaptation. CORAL [18] is a simple unsupervised domain adaptation method that aligns the second-order statistics of the source and target distributions with a linear transformation. Here, we extend CORAL to learn a nonlinear transformation that aligns correlations of layer activations in deep neural networks (Deep CORAL). Experiments on standard benchmark datasets show state-of-the-art performance. Our code is available at: https://github.com/VisionLearningGroup/CORAL .
科研通智能强力驱动
Strongly Powered by AbleSci AI