掺杂剂
分解水
兴奋剂
光催化
材料科学
带隙
Crystal(编程语言)
钒
导带
氢
晶体结构
价(化学)
催化作用
分析化学(期刊)
结晶学
化学
光电子学
冶金
有机化学
物理
电子
生物化学
色谱法
程序设计语言
计算机科学
量子力学
作者
Nguyen Le Minh Tri,Đỗ Quang Trung,Doan Van Thuan,Nguyen Thi Dieu Cam,Talal Al Tahtamouni,Thanh-Dong Pham,Đào Sỹ Đức,Mai Hùng Thanh Tùng,Hoang Van Ha,Ngo Hong Anh Thu,Hoang Thu Trang
标识
DOI:10.1016/j.ijhydene.2019.06.132
摘要
In the study, we successfully conducted vanadium doping to improve photocatalytic performance of the CuWO4 for water splitting to produce hydrogen. The doping mechanism, optimal doping ratio and material stability were investigated by various characterization methods and water splitting experiments. We found that the V substituted several W elements of the CuWO4 crystal. In the V–CuWO4, V dopant existed in form of the V5+, which created new energy level between the conduction band (CB) and the valence band (VB) of the CuWO4 to improve charge transfer as well as to prevent the e− and h+ recombination of the material. The substitution of W by V dopant also led the formation of Cu+ and W5+ in the CuWO4 crystal. The formation of Cu+ and W5+ in the CuWO4 crystal not only narrowed the energy band gap but also increased the CB potential of the material. Therefore, the V–CuWO4 generated significant amount of e− under visible light and the generated e− was strong enough to react with H+ to produce H2. The optimal V/W ratio for maximum improving photocatalytic performance of the CuWO4 was 6 wt%. Finally, we investigated that our prepared V–CuWO4 showed high stability during long-term water splitting process.
科研通智能强力驱动
Strongly Powered by AbleSci AI