A Deep Learning Model to Triage Screening Mammograms: A Simulation Study

医学 急诊分诊台 乳腺摄影术 医学物理学 乳腺X光筛查 深度学习 放射科 人工智能 医疗急救 内科学 癌症 乳腺癌 计算机科学
作者
Adam Yala,Tal Schuster,Randy C. Miles,Regina Barzilay,Constance D. Lehman
出处
期刊:Radiology [Radiological Society of North America]
卷期号:293 (1): 38-46 被引量:147
标识
DOI:10.1148/radiol.2019182908
摘要

Background Recent deep learning (DL) approaches have shown promise in improving sensitivity but have not addressed limitations in radiologist specificity or efficiency. Purpose To develop a DL model to triage a portion of mammograms as cancer free, improving performance and workflow efficiency. Materials and Methods In this retrospective study, 223 109 consecutive screening mammograms performed in 66 661 women from January 2009 to December 2016 were collected with cancer outcomes obtained through linkage to a regional tumor registry. This cohort was split by patient into 212 272, 25 999, and 26 540 mammograms from 56 831, 7021, and 7176 patients for training, validation, and testing, respectively. A DL model was developed to triage mammograms as cancer free and evaluated on the test set. A DL-triage workflow was simulated in which radiologists skipped mammograms triaged as cancer free (interpreting them as negative for cancer) and read mammograms not triaged as cancer free by using the original interpreting radiologists' assessments. Sensitivities, specificities, and percentage of mammograms read were calculated, with and without the DL-triage-simulated workflow. Statistics were computed across 5000 bootstrap samples to assess confidence intervals (CIs). Specificities were compared by using a two-tailed t test (P < .05) and sensitivities were compared by using a one-sided t test with a noninferiority margin of 5% (P < .05). Results The test set included 7176 women (mean age, 57.8 years ± 10.9 [standard deviation]). When reading all mammograms, radiologists obtained a sensitivity and specificity of 90.6% (173 of 191; 95% CI: 86.6%, 94.7%) and 93.5% (24 625 of 26 349; 95% CI: 93.3%, 93.9%). In the DL-simulated workflow, the radiologists obtained a sensitivity and specificity of 90.1% (172 of 191; 95% CI: 86.0%, 94.3%) and 94.2% (24 814 of 26 349; 95% CI: 94.0%, 94.6%) while reading 80.7% (21 420 of 26 540) of the mammograms. The simulated workflow improved specificity (P = .002) and obtained a noninferior sensitivity with a margin of 5% (P < .001). Conclusion This deep learning model has the potential to reduce radiologist workload and significantly improve specificity without harming sensitivity. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Kontos and Conant in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
3秒前
情怀应助小xy采纳,获得10
5秒前
5秒前
领导范儿应助柟枫采纳,获得10
6秒前
7秒前
hxm完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
我的名字是山脉完成签到,获得积分10
10秒前
Luka完成签到,获得积分10
11秒前
于胜男发布了新的文献求助10
12秒前
斯文败类应助seven采纳,获得10
12秒前
刘才华给刘才华的求助进行了留言
14秒前
15秒前
小娜娜完成签到,获得积分10
17秒前
耳东陈完成签到 ,获得积分10
17秒前
脚啊啊啊完成签到,获得积分10
18秒前
无限飞烟完成签到,获得积分10
18秒前
酷波er应助Luka采纳,获得10
18秒前
18秒前
19秒前
sallyieong完成签到,获得积分10
21秒前
LGA1700完成签到,获得积分10
21秒前
科研通AI2S应助于胜男采纳,获得10
21秒前
李健应助健壮的月光采纳,获得10
22秒前
称心的祥发布了新的文献求助10
22秒前
LSx完成签到,获得积分10
23秒前
1236应助mendicant采纳,获得10
24秒前
JMYISIJM完成签到,获得积分0
24秒前
24秒前
bangbangsh发布了新的文献求助20
24秒前
小小米发布了新的文献求助10
26秒前
大个应助陈天爱学习采纳,获得10
27秒前
27秒前
L_MD完成签到,获得积分10
27秒前
陈易发布了新的文献求助10
29秒前
刚刚好完成签到 ,获得积分10
32秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180770
求助须知:如何正确求助?哪些是违规求助? 2830996
关于积分的说明 7982474
捐赠科研通 2492854
什么是DOI,文献DOI怎么找? 1329874
科研通“疑难数据库(出版商)”最低求助积分说明 635802
版权声明 602954