已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Deep Learning Method for Bearing Fault Diagnosis Based on Time-Frequency Image

计算机科学 卷积神经网络 时频分析 深度学习 人工智能 断层(地质) 方位(导航) 预言 过程(计算) 数据挖掘 特征提取 模式识别(心理学) 机器学习 计算机视觉 地震学 地质学 操作系统 滤波器(信号处理)
作者
Jianyu Wang,Zhenling Mo,Heng Zhang,Qiang Miao
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 42373-42383 被引量:176
标识
DOI:10.1109/access.2019.2907131
摘要

Rolling element bearing is a critical component in rotating machinery that reduces the friction between moving pairs. Bearing fault diagnosis is always considered as a research hotspot in the field of prognostics and health management, especially with the application of deep learning. Deep learning, such as a convolutional neural network (CNN), can extract features automatically compared with traditional methods. However, the construction of the CNN model and the training process still need a lot of prior knowledge, and it takes a lot of time to build an optimal model to achieve a high classification accuracy. In addition, great challenges of universal applicability exist when different input forms (e.g., different sampling lengths or signal forms) are considered. This paper presents a universal bearing fault diagnosis model transferred from a well-known Alexnet model, and only the last fully connected layer needs to be replaced, which could reduce prior knowledge and extra time in establishing a new model. Accordingly, it is necessary to convert a raw acceleration signal to a uniform-sized time-frequency image, even when these data have different sizes. Furthermore, standardized images created by eight time-frequency analysis methods are applied to validate the effectiveness of the proposed method in two case studies. The results indicate that this method can be applied in bearing fault diagnosis, and t-SNE helps to understand the process of feature extraction and condition classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kzg完成签到 ,获得积分10
4秒前
后山种仙草完成签到,获得积分10
4秒前
汉堡包应助123456采纳,获得10
4秒前
4秒前
11秒前
孤独的觅夏完成签到,获得积分10
13秒前
风荷举发布了新的文献求助30
14秒前
17秒前
yasuo完成签到,获得积分10
18秒前
18秒前
19秒前
科目三应助流星雨采纳,获得10
20秒前
qql发布了新的文献求助10
21秒前
22秒前
23秒前
柠檬要加冰完成签到 ,获得积分10
25秒前
mirrovo完成签到 ,获得积分10
25秒前
从容凌萱完成签到 ,获得积分20
29秒前
29秒前
30秒前
30秒前
流星雨发布了新的文献求助10
35秒前
35秒前
天天快乐应助俞无声采纳,获得10
36秒前
汉堡包应助俞无声采纳,获得10
36秒前
打打应助俞无声采纳,获得150
36秒前
大模型应助俞无声采纳,获得10
36秒前
pluto应助俞无声采纳,获得10
36秒前
39秒前
充电宝应助HongChangze采纳,获得10
40秒前
123Y发布了新的文献求助10
40秒前
科目三应助研友_Lavpgn采纳,获得10
42秒前
李李发布了新的文献求助10
45秒前
yinlu发布了新的文献求助10
45秒前
47秒前
南山完成签到,获得积分10
49秒前
桐桐应助huamo采纳,获得10
50秒前
Ivan完成签到,获得积分10
51秒前
高山七石发布了新的文献求助10
52秒前
Heidi完成签到 ,获得积分10
53秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466610
求助须知:如何正确求助?哪些是违规求助? 3059430
关于积分的说明 9066178
捐赠科研通 2749884
什么是DOI,文献DOI怎么找? 1508779
科研通“疑难数据库(出版商)”最低求助积分说明 697059
邀请新用户注册赠送积分活动 696883