Joint instancewise and instance-union fusion for improving motion detection algorithms

分割 计算机科学 人工智能 假阳性悖论 二进制数 算法 模式识别(心理学) 计算机视觉 目标检测 图像分割 数学 算术
作者
Menghao Sun,Zhixiang Zhu,Chenwu Wang,Pei Wang
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:31 (03) 被引量:1
标识
DOI:10.1117/1.jei.31.3.033006
摘要

Motion detection (MD) is a fundamental step in many advanced computer vision applications, but the various complex challenges in real surveillance videos lead to some false positives and false negatives in the detection results of traditional MD algorithms. Therefore, joint instancewise and instance-union fusion for improving MD algorithms, in which an instance segmentation model is combined with a traditional MD algorithm. are proposed to address this problem. First, for each input frame (indexed by t), the MD algorithm produces a binary mask Mt, and the instance segmentation model produces the specific categories of binary instance masks (BIMs). Second, according to the instance confidence, BIMs are divided into high-quality binary instance masks (HBIMs) and low-quality binary instance masks (LBIMs). Then instancewise fusion of HBIMs with Mt and instance-union fusion of LBIMs with Mt are used to generate a high-quality foreground segmentation mask DtH and a low-quality foreground segmentation mask DtL, respectively. Finally, the bitwise logic addition operation of DtH and DtL produces a more accurate foreground segmentation result than Mt, called Dt. The experimental results show that our proposed method with visual background extractor and YOLACT++ processes at a resolution of 320 × 240 videos at 30 frames per second. For the Changedetection.net -2014, SBM-RGBD, and labeled and annotated sequences for integral evaluation of segmentation algorithms datasets, the highest overall F-measure of our experimental results with our proposed method are 0.8454, 0.8094, and 0.8939, respectively, surpassing state-of-the-art unsupervised MD methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一颗咸蛋黄完成签到 ,获得积分20
1秒前
打打应助5477采纳,获得10
1秒前
灵巧坤发布了新的文献求助30
1秒前
1秒前
小猴完成签到,获得积分10
2秒前
Raymond应助NANA采纳,获得10
3秒前
Sean完成签到 ,获得积分10
3秒前
3秒前
无情山水发布了新的文献求助10
4秒前
锦纹完成签到,获得积分10
4秒前
南桥发布了新的文献求助10
4秒前
4秒前
伶俐的书白完成签到,获得积分10
5秒前
科研通AI5应助威武诺言采纳,获得10
5秒前
5秒前
LXL完成签到,获得积分10
5秒前
杳鸢应助三金采纳,获得20
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
英俊的铭应助yyj采纳,获得10
6秒前
SV发布了新的文献求助10
6秒前
7秒前
12发布了新的文献求助10
7秒前
JamesPei应助化学狗采纳,获得10
7秒前
胡图图发布了新的文献求助10
7秒前
8秒前
xm完成签到,获得积分10
9秒前
谦让的含海完成签到,获得积分10
9秒前
所所应助包容的剑采纳,获得10
9秒前
9秒前
10秒前
lynn_zhang发布了新的文献求助10
10秒前
11秒前
xh发布了新的文献求助10
11秒前
所所应助luoshi采纳,获得10
11秒前
飞龙在天完成签到 ,获得积分10
11秒前
深爱不疑完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762