材料科学
有机太阳能电池
三元运算
接受者
激子
能量转换效率
光伏
化学物理
光电子学
纳米技术
聚合物
化学
光伏系统
计算机科学
物理
凝聚态物理
生物
复合材料
程序设计语言
生态学
作者
Lei Zhu,Ming Zhang,Jinqiu Xu,Chao Li,Jun Yan,Guanqing Zhou,Wenkai Zhong,Tianyu Hao,Jiali Song,Xiaonan Xue,Zichun Zhou,Rui Zeng,Haiming Zhu,Chun‐Chao Chen,Roderick C. I. MacKenzie,Yecheng Zou,Jenny Nelson,Yongming Zhang,Yanming Sun,Feng Liu
出处
期刊:Nature Materials
[Springer Nature]
日期:2022-05-05
卷期号:21 (6): 656-663
被引量:1687
标识
DOI:10.1038/s41563-022-01244-y
摘要
In organic photovoltaics, morphological control of donor and acceptor domains on the nanoscale is the key for enabling efficient exciton diffusion and dissociation, carrier transport and suppression of recombination losses. To realize this, here, we demonstrated a double-fibril network based on a ternary donor-acceptor morphology with multi-length scales constructed by combining ancillary conjugated polymer crystallizers and a non-fullerene acceptor filament assembly. Using this approach, we achieved an average power conversion efficiency of 19.3% (certified 19.2%). The success lies in the good match between the photoelectric parameters and the morphological characteristic lengths, which utilizes the excitons and free charges efficiently. This strategy leads to an enhanced exciton diffusion length and a reduced recombination rate, hence minimizing photon-to-electron losses in the ternary devices as compared to their binary counterparts. The double-fibril network morphology strategy minimizes losses and maximizes the power output, offering the possibility of 20% power conversion efficiencies in single-junction organic photovoltaics.
科研通智能强力驱动
Strongly Powered by AbleSci AI