亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Outcome Prediction in Patients with Severe Traumatic Brain Injury Using Deep Learning from Head CT Scans

医学 格拉斯哥昏迷指数 创伤性脑损伤 接收机工作特性 回顾性队列研究 头部受伤 格拉斯哥结局量表 急诊医学 内科学 外科 精神科
作者
Matthew Pease,Dooman Arefan,Jason Barber,Esther L. Yuh,Ava M. Puccio,Kerri Hochberger,Enyinna L. Nwachuku,Souvik Roy,Stephanie M. Casillo,Nancy Temkin,David O. Okonkwo,Shandong Wu,Neeraj Badjatia,Yelena G. Bodien,Ann‐Christine Duhaime,V. Ramana Feeser,Adam R. Ferguson,Brandon Foreman,Raquel C. Gardner,Shankar Gopinath,C. Dirk Keene,Christopher Madden,Michael McCrea,Pratik Mukherjee,Laura B. Ngwenya,David M. Schnyer,Sabrina R. Taylor,John K. Yue
出处
期刊:Radiology [Radiological Society of North America]
卷期号:304 (2): 385-394 被引量:41
标识
DOI:10.1148/radiol.212181
摘要

Background After severe traumatic brain injury (sTBI), physicians use long-term prognostication to guide acute clinical care yet struggle to predict outcomes in comatose patients. Purpose To develop and evaluate a prognostic model combining deep learning of head CT scans and clinical information to predict long-term outcomes after sTBI. Materials and Methods This was a retrospective analysis of two prospectively collected databases. The model-building set included 537 patients (mean age, 40 years ± 17 [SD]; 422 men) from one institution from November 2002 to December 2018. Transfer learning and curriculum learning were applied to a convolutional neural network using admission head CT to predict mortality and unfavorable outcomes (Glasgow Outcomes Scale scores 1–3) at 6 months. This was combined with clinical input for a holistic fusion model. The models were evaluated using an independent internal test set and an external cohort of 220 patients with sTBI (mean age, 39 years ± 17; 166 men) from 18 institutions in the Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study from February 2014 to April 2018. The models were compared with the International Mission on Prognosis and Analysis of Clinical Trials in TBI (IMPACT) model and the predictions of three neurosurgeons. Area under the receiver operating characteristic curve (AUC) was used as the main model performance metric. Results The fusion model had higher AUCs than did the IMPACT model in the prediction of mortality (AUC, 0.92 [95% CI: 0.86, 0.97] vs 0.80 [95% CI: 0.71, 0.88]; P < .001) and unfavorable outcomes (AUC, 0.88 [95% CI: 0.82, 0.94] vs 0.82 [95% CI: 0.75, 0.90]; P = .04) on the internal data set. For external TRACK-TBI testing, there was no evidence of a significant difference in the performance of any models compared with the IMPACT model (AUC, 0.83; 95% CI: 0.77, 0.90) in the prediction of mortality. The Imaging model (AUC, 0.73; 95% CI: 0.66–0.81; P = .02) and the fusion model (AUC, 0.68; 95% CI: 0.60, 0.76; P = .02) underperformed as compared with the IMPACT model (AUC, 0.83; 95% CI: 0.77, 0.89) in the prediction of unfavorable outcomes. The fusion model outperformed the predictions of the neurosurgeons. Conclusion A deep learning model of head CT and clinical information can be used to predict 6-month outcomes after severe traumatic brain injury. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Haller in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
20秒前
Re完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
章鱼完成签到,获得积分10
2分钟前
2分钟前
puzhongjiMiQ发布了新的文献求助10
2分钟前
3分钟前
3分钟前
淡淡醉波wuliao完成签到 ,获得积分0
3分钟前
量子星尘发布了新的文献求助10
3分钟前
hfguwn完成签到,获得积分10
3分钟前
4分钟前
排骨大王完成签到,获得积分10
4分钟前
wuju发布了新的文献求助10
4分钟前
4分钟前
4分钟前
笨笨山芙完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
贰鸟应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
捉迷藏完成签到,获得积分0
5分钟前
puzhongjiMiQ发布了新的文献求助10
5分钟前
puzhongjiMiQ发布了新的文献求助10
5分钟前
puzhongjiMiQ发布了新的文献求助10
5分钟前
puzhongjiMiQ完成签到,获得积分10
6分钟前
6分钟前
wangfaqing942完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助50
6分钟前
6分钟前
vitamin完成签到 ,获得积分10
6分钟前
6分钟前
英姑应助tomorrow采纳,获得10
6分钟前
orixero应助神算子瑛姑采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612124
求助须知:如何正确求助?哪些是违规求助? 4017445
关于积分的说明 12436321
捐赠科研通 3699453
什么是DOI,文献DOI怎么找? 2040157
邀请新用户注册赠送积分活动 1072982
科研通“疑难数据库(出版商)”最低求助积分说明 956679