亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Outcome Prediction in Patients with Severe Traumatic Brain Injury Using Deep Learning from Head CT Scans

医学 格拉斯哥昏迷指数 创伤性脑损伤 接收机工作特性 回顾性队列研究 头部受伤 格拉斯哥结局量表 急诊医学 内科学 外科 精神科
作者
Matthew Pease,Dooman Arefan,Jason Barber,Esther L. Yuh,Ava M. Puccio,Kerri Hochberger,Enyinna L. Nwachuku,Souvik Roy,Stephanie M. Casillo,Nancy Temkin,David O. Okonkwo,Shandong Wu,Neeraj Badjatia,Yelena G. Bodien,Ann‐Christine Duhaime,V. Ramana Feeser,Adam R. Ferguson,Brandon Foreman,Raquel C. Gardner,Shankar Gopinath,C. Dirk Keene,Christopher Madden,Michael McCrea,Pratik Mukherjee,Laura B. Ngwenya,David M. Schnyer,Sabrina R. Taylor,John K. Yue
出处
期刊:Radiology [Radiological Society of North America]
卷期号:304 (2): 385-394 被引量:41
标识
DOI:10.1148/radiol.212181
摘要

Background After severe traumatic brain injury (sTBI), physicians use long-term prognostication to guide acute clinical care yet struggle to predict outcomes in comatose patients. Purpose To develop and evaluate a prognostic model combining deep learning of head CT scans and clinical information to predict long-term outcomes after sTBI. Materials and Methods This was a retrospective analysis of two prospectively collected databases. The model-building set included 537 patients (mean age, 40 years ± 17 [SD]; 422 men) from one institution from November 2002 to December 2018. Transfer learning and curriculum learning were applied to a convolutional neural network using admission head CT to predict mortality and unfavorable outcomes (Glasgow Outcomes Scale scores 1–3) at 6 months. This was combined with clinical input for a holistic fusion model. The models were evaluated using an independent internal test set and an external cohort of 220 patients with sTBI (mean age, 39 years ± 17; 166 men) from 18 institutions in the Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study from February 2014 to April 2018. The models were compared with the International Mission on Prognosis and Analysis of Clinical Trials in TBI (IMPACT) model and the predictions of three neurosurgeons. Area under the receiver operating characteristic curve (AUC) was used as the main model performance metric. Results The fusion model had higher AUCs than did the IMPACT model in the prediction of mortality (AUC, 0.92 [95% CI: 0.86, 0.97] vs 0.80 [95% CI: 0.71, 0.88]; P < .001) and unfavorable outcomes (AUC, 0.88 [95% CI: 0.82, 0.94] vs 0.82 [95% CI: 0.75, 0.90]; P = .04) on the internal data set. For external TRACK-TBI testing, there was no evidence of a significant difference in the performance of any models compared with the IMPACT model (AUC, 0.83; 95% CI: 0.77, 0.90) in the prediction of mortality. The Imaging model (AUC, 0.73; 95% CI: 0.66–0.81; P = .02) and the fusion model (AUC, 0.68; 95% CI: 0.60, 0.76; P = .02) underperformed as compared with the IMPACT model (AUC, 0.83; 95% CI: 0.77, 0.89) in the prediction of unfavorable outcomes. The fusion model outperformed the predictions of the neurosurgeons. Conclusion A deep learning model of head CT and clinical information can be used to predict 6-month outcomes after severe traumatic brain injury. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Haller in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莉莉斯完成签到 ,获得积分10
12秒前
zzz完成签到 ,获得积分10
27秒前
31秒前
43秒前
snow完成签到 ,获得积分10
43秒前
49秒前
Sience发布了新的文献求助10
1分钟前
华仔应助害羞的采波采纳,获得20
1分钟前
香山叶正红完成签到 ,获得积分10
1分钟前
青阳发布了新的文献求助10
2分钟前
乐乐应助2333采纳,获得10
2分钟前
青阳完成签到,获得积分10
2分钟前
2分钟前
Arvin完成签到,获得积分10
2分钟前
Arvin发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
lhr发布了新的文献求助10
2分钟前
ding应助lhr采纳,获得10
2分钟前
3分钟前
3分钟前
Ava应助害羞的采波采纳,获得20
3分钟前
3分钟前
SAIL完成签到 ,获得积分10
3分钟前
乐观的蜗牛完成签到 ,获得积分10
3分钟前
3分钟前
2333发布了新的文献求助10
3分钟前
eric_pty发布了新的文献求助10
3分钟前
3分钟前
完美世界应助2333采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
天天快乐应助科研通管家采纳,获得10
4分钟前
5分钟前
eric_pty完成签到 ,获得积分20
5分钟前
执着听云发布了新的文献求助30
5分钟前
可爱的函函应助沉静晓啸采纳,获得10
5分钟前
隐形曼青应助tong采纳,获得30
5分钟前
5分钟前
NexusExplorer应助执着听云采纳,获得10
5分钟前
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671249
求助须知:如何正确求助?哪些是违规求助? 3228107
关于积分的说明 9778506
捐赠科研通 2938375
什么是DOI,文献DOI怎么找? 1609969
邀请新用户注册赠送积分活动 760497
科研通“疑难数据库(出版商)”最低求助积分说明 735991