Outcome Prediction in Patients with Severe Traumatic Brain Injury Using Deep Learning from Head CT Scans

医学 格拉斯哥昏迷指数 创伤性脑损伤 接收机工作特性 回顾性队列研究 头部受伤 格拉斯哥结局量表 急诊医学 内科学 外科 精神科
作者
Matthew Pease,Dooman Arefan,Jason Barber,Esther L. Yuh,Ava M. Puccio,Kerri Hochberger,Enyinna L. Nwachuku,Souvik Roy,Stephanie M. Casillo,Nancy Temkin,David O. Okonkwo,Shandong Wu,Neeraj Badjatia,Yelena G. Bodien,Ann‐Christine Duhaime,V. Ramana Feeser,Adam R. Ferguson,Brandon Foreman,Raquel C. Gardner,Shankar Gopinath,C. Dirk Keene,Christopher Madden,Michael McCrea,Pratik Mukherjee,Laura B. Ngwenya,David M. Schnyer,Sabrina R. Taylor,John K. Yue
出处
期刊:Radiology [Radiological Society of North America]
卷期号:304 (2): 385-394 被引量:41
标识
DOI:10.1148/radiol.212181
摘要

Background After severe traumatic brain injury (sTBI), physicians use long-term prognostication to guide acute clinical care yet struggle to predict outcomes in comatose patients. Purpose To develop and evaluate a prognostic model combining deep learning of head CT scans and clinical information to predict long-term outcomes after sTBI. Materials and Methods This was a retrospective analysis of two prospectively collected databases. The model-building set included 537 patients (mean age, 40 years ± 17 [SD]; 422 men) from one institution from November 2002 to December 2018. Transfer learning and curriculum learning were applied to a convolutional neural network using admission head CT to predict mortality and unfavorable outcomes (Glasgow Outcomes Scale scores 1–3) at 6 months. This was combined with clinical input for a holistic fusion model. The models were evaluated using an independent internal test set and an external cohort of 220 patients with sTBI (mean age, 39 years ± 17; 166 men) from 18 institutions in the Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study from February 2014 to April 2018. The models were compared with the International Mission on Prognosis and Analysis of Clinical Trials in TBI (IMPACT) model and the predictions of three neurosurgeons. Area under the receiver operating characteristic curve (AUC) was used as the main model performance metric. Results The fusion model had higher AUCs than did the IMPACT model in the prediction of mortality (AUC, 0.92 [95% CI: 0.86, 0.97] vs 0.80 [95% CI: 0.71, 0.88]; P < .001) and unfavorable outcomes (AUC, 0.88 [95% CI: 0.82, 0.94] vs 0.82 [95% CI: 0.75, 0.90]; P = .04) on the internal data set. For external TRACK-TBI testing, there was no evidence of a significant difference in the performance of any models compared with the IMPACT model (AUC, 0.83; 95% CI: 0.77, 0.90) in the prediction of mortality. The Imaging model (AUC, 0.73; 95% CI: 0.66–0.81; P = .02) and the fusion model (AUC, 0.68; 95% CI: 0.60, 0.76; P = .02) underperformed as compared with the IMPACT model (AUC, 0.83; 95% CI: 0.77, 0.89) in the prediction of unfavorable outcomes. The fusion model outperformed the predictions of the neurosurgeons. Conclusion A deep learning model of head CT and clinical information can be used to predict 6-month outcomes after severe traumatic brain injury. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Haller in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
徐炎发布了新的文献求助10
1秒前
阳光的涵菡发布了新的文献求助100
2秒前
2秒前
万能图书馆应助Sweeney采纳,获得30
2秒前
3秒前
6秒前
徐炎完成签到,获得积分10
7秒前
7秒前
wiken发布了新的文献求助30
7秒前
匪石发布了新的文献求助10
8秒前
把拼好的饭给你完成签到,获得积分10
8秒前
8秒前
搜集达人应助草人乙采纳,获得10
9秒前
Ambitious完成签到,获得积分10
9秒前
陈星完成签到,获得积分10
9秒前
绿狗玩偶发布了新的文献求助10
12秒前
自然卷发布了新的文献求助30
12秒前
李健的小迷弟应助yy采纳,获得10
13秒前
英俊的铭应助小巧寻桃采纳,获得10
13秒前
科研通AI2S应助stt采纳,获得10
14秒前
123完成签到 ,获得积分10
17秒前
坚定的泥猴桃完成签到 ,获得积分10
18秒前
18秒前
同學你該吃藥了完成签到 ,获得积分10
18秒前
19秒前
19秒前
19秒前
21秒前
xvping完成签到,获得积分10
21秒前
22秒前
斯文败类应助闪闪落雁采纳,获得10
22秒前
22秒前
朴素炎彬完成签到,获得积分20
23秒前
汉堡包应助兀那狗子别跑采纳,获得10
23秒前
执着冷雁发布了新的文献求助10
24秒前
syp发布了新的文献求助10
25秒前
泡泡完成签到 ,获得积分10
25秒前
25秒前
orixero应助唐tang采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300240
求助须知:如何正确求助?哪些是违规求助? 4448171
关于积分的说明 13845185
捐赠科研通 4333829
什么是DOI,文献DOI怎么找? 2379156
邀请新用户注册赠送积分活动 1374314
关于科研通互助平台的介绍 1339962