已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Outcome Prediction in Patients with Severe Traumatic Brain Injury Using Deep Learning from Head CT Scans

医学 格拉斯哥昏迷指数 创伤性脑损伤 接收机工作特性 回顾性队列研究 头部受伤 格拉斯哥结局量表 急诊医学 内科学 外科 精神科
作者
Matthew Pease,Dooman Arefan,Jason Barber,Esther L. Yuh,Ava M. Puccio,Kerri Hochberger,Enyinna L. Nwachuku,Souvik Roy,Stephanie M. Casillo,Nancy Temkin,David O. Okonkwo,Shandong Wu,Neeraj Badjatia,Yelena G. Bodien,Ann‐Christine Duhaime,V. Ramana Feeser,Adam R. Ferguson,Brandon Foreman,Raquel C. Gardner,Shankar Gopinath,C. Dirk Keene,Christopher Madden,Michael McCrea,Pratik Mukherjee,Laura B. Ngwenya,David M. Schnyer,Sabrina R. Taylor,John K. Yue
出处
期刊:Radiology [Radiological Society of North America]
卷期号:304 (2): 385-394 被引量:41
标识
DOI:10.1148/radiol.212181
摘要

Background After severe traumatic brain injury (sTBI), physicians use long-term prognostication to guide acute clinical care yet struggle to predict outcomes in comatose patients. Purpose To develop and evaluate a prognostic model combining deep learning of head CT scans and clinical information to predict long-term outcomes after sTBI. Materials and Methods This was a retrospective analysis of two prospectively collected databases. The model-building set included 537 patients (mean age, 40 years ± 17 [SD]; 422 men) from one institution from November 2002 to December 2018. Transfer learning and curriculum learning were applied to a convolutional neural network using admission head CT to predict mortality and unfavorable outcomes (Glasgow Outcomes Scale scores 1–3) at 6 months. This was combined with clinical input for a holistic fusion model. The models were evaluated using an independent internal test set and an external cohort of 220 patients with sTBI (mean age, 39 years ± 17; 166 men) from 18 institutions in the Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study from February 2014 to April 2018. The models were compared with the International Mission on Prognosis and Analysis of Clinical Trials in TBI (IMPACT) model and the predictions of three neurosurgeons. Area under the receiver operating characteristic curve (AUC) was used as the main model performance metric. Results The fusion model had higher AUCs than did the IMPACT model in the prediction of mortality (AUC, 0.92 [95% CI: 0.86, 0.97] vs 0.80 [95% CI: 0.71, 0.88]; P < .001) and unfavorable outcomes (AUC, 0.88 [95% CI: 0.82, 0.94] vs 0.82 [95% CI: 0.75, 0.90]; P = .04) on the internal data set. For external TRACK-TBI testing, there was no evidence of a significant difference in the performance of any models compared with the IMPACT model (AUC, 0.83; 95% CI: 0.77, 0.90) in the prediction of mortality. The Imaging model (AUC, 0.73; 95% CI: 0.66–0.81; P = .02) and the fusion model (AUC, 0.68; 95% CI: 0.60, 0.76; P = .02) underperformed as compared with the IMPACT model (AUC, 0.83; 95% CI: 0.77, 0.89) in the prediction of unfavorable outcomes. The fusion model outperformed the predictions of the neurosurgeons. Conclusion A deep learning model of head CT and clinical information can be used to predict 6-month outcomes after severe traumatic brain injury. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Haller in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wtt完成签到,获得积分10
1秒前
大爱人生完成签到 ,获得积分10
3秒前
yaosan完成签到,获得积分10
3秒前
学术脑袋完成签到 ,获得积分10
5秒前
9秒前
自然完成签到,获得积分10
9秒前
echo发布了新的文献求助10
9秒前
快乐的易巧完成签到,获得积分10
11秒前
听雨落声完成签到 ,获得积分10
13秒前
15秒前
OhHH完成签到 ,获得积分10
16秒前
资山雁完成签到 ,获得积分10
17秒前
feihua1完成签到 ,获得积分10
20秒前
谦让小熊猫完成签到,获得积分10
20秒前
cc完成签到,获得积分10
21秒前
852应助lsh采纳,获得10
21秒前
科研通AI6应助濮阳灵竹采纳,获得10
24秒前
鈮宝完成签到 ,获得积分10
24秒前
taotao完成签到,获得积分10
26秒前
26秒前
潇洒的马里奥完成签到,获得积分10
27秒前
Hyp完成签到,获得积分10
29秒前
31秒前
XMH完成签到,获得积分10
32秒前
fft发布了新的文献求助10
32秒前
西川完成签到 ,获得积分10
33秒前
kxy0311完成签到 ,获得积分10
34秒前
淡淡的幻嫣完成签到 ,获得积分10
34秒前
打打应助fukase采纳,获得10
34秒前
35秒前
11完成签到,获得积分20
36秒前
36秒前
lsh发布了新的文献求助10
38秒前
王小凡完成签到 ,获得积分10
40秒前
通通发布了新的文献求助10
40秒前
43秒前
Lucas应助11采纳,获得10
46秒前
fukase发布了新的文献求助10
47秒前
小谭完成签到,获得积分10
49秒前
49秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5136576
求助须知:如何正确求助?哪些是违规求助? 4336698
关于积分的说明 13510319
捐赠科研通 4174759
什么是DOI,文献DOI怎么找? 2289071
邀请新用户注册赠送积分活动 1289750
关于科研通互助平台的介绍 1231062