Outcome Prediction in Patients with Severe Traumatic Brain Injury Using Deep Learning from Head CT Scans

医学 格拉斯哥昏迷指数 创伤性脑损伤 接收机工作特性 回顾性队列研究 头部受伤 格拉斯哥结局量表 急诊医学 内科学 外科 精神科
作者
Matthew Pease,Dooman Arefan,Jason Barber,Esther L. Yuh,Ava M. Puccio,Kerri Hochberger,Enyinna L. Nwachuku,Souvik Roy,Stephanie M. Casillo,Nancy Temkin,David O. Okonkwo,Shandong Wu,Neeraj Badjatia,Yelena G. Bodien,Ann‐Christine Duhaime,V. Ramana Feeser,Adam R. Ferguson,Brandon Foreman,Raquel C. Gardner,Shankar Gopinath,C. Dirk Keene,Christopher Madden,Michael McCrea,Pratik Mukherjee,Laura B. Ngwenya,David M. Schnyer,Sabrina R. Taylor,John K. Yue
出处
期刊:Radiology [Radiological Society of North America]
卷期号:304 (2): 385-394 被引量:41
标识
DOI:10.1148/radiol.212181
摘要

Background After severe traumatic brain injury (sTBI), physicians use long-term prognostication to guide acute clinical care yet struggle to predict outcomes in comatose patients. Purpose To develop and evaluate a prognostic model combining deep learning of head CT scans and clinical information to predict long-term outcomes after sTBI. Materials and Methods This was a retrospective analysis of two prospectively collected databases. The model-building set included 537 patients (mean age, 40 years ± 17 [SD]; 422 men) from one institution from November 2002 to December 2018. Transfer learning and curriculum learning were applied to a convolutional neural network using admission head CT to predict mortality and unfavorable outcomes (Glasgow Outcomes Scale scores 1–3) at 6 months. This was combined with clinical input for a holistic fusion model. The models were evaluated using an independent internal test set and an external cohort of 220 patients with sTBI (mean age, 39 years ± 17; 166 men) from 18 institutions in the Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study from February 2014 to April 2018. The models were compared with the International Mission on Prognosis and Analysis of Clinical Trials in TBI (IMPACT) model and the predictions of three neurosurgeons. Area under the receiver operating characteristic curve (AUC) was used as the main model performance metric. Results The fusion model had higher AUCs than did the IMPACT model in the prediction of mortality (AUC, 0.92 [95% CI: 0.86, 0.97] vs 0.80 [95% CI: 0.71, 0.88]; P < .001) and unfavorable outcomes (AUC, 0.88 [95% CI: 0.82, 0.94] vs 0.82 [95% CI: 0.75, 0.90]; P = .04) on the internal data set. For external TRACK-TBI testing, there was no evidence of a significant difference in the performance of any models compared with the IMPACT model (AUC, 0.83; 95% CI: 0.77, 0.90) in the prediction of mortality. The Imaging model (AUC, 0.73; 95% CI: 0.66–0.81; P = .02) and the fusion model (AUC, 0.68; 95% CI: 0.60, 0.76; P = .02) underperformed as compared with the IMPACT model (AUC, 0.83; 95% CI: 0.77, 0.89) in the prediction of unfavorable outcomes. The fusion model outperformed the predictions of the neurosurgeons. Conclusion A deep learning model of head CT and clinical information can be used to predict 6-month outcomes after severe traumatic brain injury. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Haller in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
时闲应助yuanhao采纳,获得10
刚刚
果果发布了新的文献求助10
刚刚
即使没有月亮完成签到,获得积分10
刚刚
小二郎应助enen采纳,获得10
1秒前
CodeCraft应助斯文幻儿采纳,获得10
1秒前
852应助高兴的平露采纳,获得10
1秒前
1秒前
陌上花开发布了新的文献求助10
1秒前
pawn完成签到,获得积分10
2秒前
花生发布了新的文献求助10
2秒前
liufumei发布了新的文献求助10
2秒前
wdy111应助GCY采纳,获得20
3秒前
LUMOS完成签到,获得积分10
3秒前
3秒前
4秒前
hdh发布了新的文献求助10
4秒前
QQWQEQRQ发布了新的文献求助10
4秒前
小蘑菇应助mmc采纳,获得10
4秒前
接好运发布了新的文献求助20
4秒前
5秒前
zhangzhi发布了新的文献求助10
6秒前
菠菜发布了新的文献求助200
7秒前
望望旺仔牛奶完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
小二郎应助梦醒采纳,获得10
8秒前
西扬完成签到,获得积分10
8秒前
林结衣完成签到,获得积分10
9秒前
9秒前
斯文败类应助Mark采纳,获得10
9秒前
9秒前
clay_park完成签到,获得积分10
9秒前
czx发布了新的文献求助10
9秒前
天天快乐应助leodu采纳,获得10
10秒前
10秒前
10秒前
牛姐发布了新的文献求助10
10秒前
陌上花开完成签到,获得积分10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650