Pseudoprospective Paraclinical Interaction of Radiology Residents With a Deep Learning System for Prostate Cancer Detection

麦克内马尔试验 医学 前列腺癌 接收机工作特性 前列腺 磁共振成像 多参数磁共振成像 前列腺活检 卷积神经网络 放射科 活检 核医学 癌症 人工智能 内科学 计算机科学 统计 数学
作者
Kevin Sun Zhang,Patrick Schelb,Nils Netzer,Anoshirwan Andrej Tavakoli,Myriam Keymling,Eckhard Wehrse,Robert Hog,Lukas T. Rotkopf,Markus Wennmann,Philip Glemser,Heidi Thierjung,Nikolaus von Knebel Doeberitz,Jens Kleesiek,Magdalena Görtz,Viktoria Schütz,Thomas Hielscher,Albrecht Stenzinger,Markus Hohenfellner,Heinz‐Peter Schlemmer,Klaus H. Maier‐Hein,David Bonekamp
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
卷期号:57 (9): 601-612 被引量:8
标识
DOI:10.1097/rli.0000000000000878
摘要

Objectives The aim of this study was to estimate the prospective utility of a previously retrospectively validated convolutional neural network (CNN) for prostate cancer (PC) detection on prostate magnetic resonance imaging (MRI). Materials and Methods The biparametric (T2-weighted and diffusion-weighted) portion of clinical multiparametric prostate MRI from consecutive men included between November 2019 and September 2020 was fully automatically and individually analyzed by a CNN briefly after image acquisition (pseudoprospective design). Radiology residents performed 2 research Prostate Imaging Reporting and Data System (PI-RADS) assessments of the multiparametric dataset independent from clinical reporting (paraclinical design) before and after review of the CNN results and completed a survey. Presence of clinically significant PC was determined by the presence of an International Society of Urological Pathology grade 2 or higher PC on combined targeted and extended systematic transperineal MRI/transrectal ultrasound fusion biopsy. Sensitivities and specificities on a patient and prostate sextant basis were compared using the McNemar test and compared with the receiver operating characteristic (ROC) curve of CNN. Survey results were summarized as absolute counts and percentages. Results A total of 201 men were included. The CNN achieved an ROC area under the curve of 0.77 on a patient basis. Using PI-RADS ≥3-emulating probability threshold (c3), CNN had a patient-based sensitivity of 81.8% and specificity of 54.8%, not statistically different from the current clinical routine PI-RADS ≥4 assessment at 90.9% and 54.8%, respectively ( P = 0.30/ P = 1.0). In general, residents achieved similar sensitivity and specificity before and after CNN review. On a prostate sextant basis, clinical assessment possessed the highest ROC area under the curve of 0.82, higher than CNN (AUC = 0.76, P = 0.21) and significantly higher than resident performance before and after CNN review (AUC = 0.76 / 0.76, P ≤ 0.03). The resident survey indicated CNN to be helpful and clinically useful. Conclusions Pseudoprospective paraclinical integration of fully automated CNN-based detection of suspicious lesions on prostate multiparametric MRI was demonstrated and showed good acceptance among residents, whereas no significant improvement in resident performance was found. General CNN performance was preserved despite an observed shift in CNN calibration, identifying the requirement for continuous quality control and recalibration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sarah悦发布了新的文献求助10
刚刚
阔达的金鱼完成签到,获得积分10
刚刚
RC_Wang完成签到,获得积分0
1秒前
能干念双发布了新的文献求助10
2秒前
咳咳发布了新的文献求助10
2秒前
自由的雨南完成签到 ,获得积分10
3秒前
颜云尔完成签到,获得积分10
3秒前
CodeCraft应助默默安双采纳,获得10
3秒前
Clearly完成签到 ,获得积分10
4秒前
佩奇rachel发布了新的文献求助10
4秒前
4秒前
lili发布了新的文献求助10
5秒前
香蕉觅云应助小巧半芹采纳,获得10
5秒前
5秒前
卡卡西应助嵩嵩采纳,获得20
5秒前
6秒前
6秒前
ChenCC发布了新的文献求助10
6秒前
赘婿应助自强不息采纳,获得10
6秒前
彭于彦祖应助jiaojaioo采纳,获得50
7秒前
大可发布了新的文献求助10
8秒前
8秒前
LHH0411完成签到,获得积分20
9秒前
苏黎世发布了新的文献求助10
9秒前
10秒前
小小富应助能干念双采纳,获得10
10秒前
10秒前
自信天发布了新的文献求助10
11秒前
Orange应助123采纳,获得10
11秒前
维生素CCC完成签到 ,获得积分10
11秒前
寒冷天亦发布了新的文献求助10
12秒前
12秒前
12秒前
LML完成签到 ,获得积分10
12秒前
jiayan111发布了新的文献求助10
12秒前
Hello应助咳咳采纳,获得10
12秒前
wrx_KGM完成签到,获得积分10
14秒前
jijijibibibi完成签到,获得积分10
14秒前
一玮完成签到 ,获得积分10
14秒前
郭哥发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954647
求助须知:如何正确求助?哪些是违规求助? 3500801
关于积分的说明 11101075
捐赠科研通 3231264
什么是DOI,文献DOI怎么找? 1786399
邀请新用户注册赠送积分活动 869980
科研通“疑难数据库(出版商)”最低求助积分说明 801751