Pseudoprospective Paraclinical Interaction of Radiology Residents With a Deep Learning System for Prostate Cancer Detection

麦克内马尔试验 医学 前列腺癌 接收机工作特性 前列腺 磁共振成像 多参数磁共振成像 前列腺活检 卷积神经网络 放射科 活检 核医学 癌症 人工智能 内科学 计算机科学 统计 数学
作者
Kevin Sun Zhang,Patrick Schelb,Nils Netzer,Anoshirwan Andrej Tavakoli,Myriam Keymling,Eckhard Wehrse,Robert Hog,Lukas T. Rotkopf,Markus Wennmann,Philip Glemser,Heidi Thierjung,Nikolaus von Knebel Doeberitz,Jens Kleesiek,Magdalena Görtz,Viktoria Schütz,Thomas Hielscher,Albrecht Stenzinger,Markus Hohenfellner,Heinz‐Peter Schlemmer,Klaus Maier‐Hein
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
卷期号:57 (9): 601-612 被引量:8
标识
DOI:10.1097/rli.0000000000000878
摘要

Objectives The aim of this study was to estimate the prospective utility of a previously retrospectively validated convolutional neural network (CNN) for prostate cancer (PC) detection on prostate magnetic resonance imaging (MRI). Materials and Methods The biparametric (T2-weighted and diffusion-weighted) portion of clinical multiparametric prostate MRI from consecutive men included between November 2019 and September 2020 was fully automatically and individually analyzed by a CNN briefly after image acquisition (pseudoprospective design). Radiology residents performed 2 research Prostate Imaging Reporting and Data System (PI-RADS) assessments of the multiparametric dataset independent from clinical reporting (paraclinical design) before and after review of the CNN results and completed a survey. Presence of clinically significant PC was determined by the presence of an International Society of Urological Pathology grade 2 or higher PC on combined targeted and extended systematic transperineal MRI/transrectal ultrasound fusion biopsy. Sensitivities and specificities on a patient and prostate sextant basis were compared using the McNemar test and compared with the receiver operating characteristic (ROC) curve of CNN. Survey results were summarized as absolute counts and percentages. Results A total of 201 men were included. The CNN achieved an ROC area under the curve of 0.77 on a patient basis. Using PI-RADS ≥3-emulating probability threshold (c3), CNN had a patient-based sensitivity of 81.8% and specificity of 54.8%, not statistically different from the current clinical routine PI-RADS ≥4 assessment at 90.9% and 54.8%, respectively ( P = 0.30/ P = 1.0). In general, residents achieved similar sensitivity and specificity before and after CNN review. On a prostate sextant basis, clinical assessment possessed the highest ROC area under the curve of 0.82, higher than CNN (AUC = 0.76, P = 0.21) and significantly higher than resident performance before and after CNN review (AUC = 0.76 / 0.76, P ≤ 0.03). The resident survey indicated CNN to be helpful and clinically useful. Conclusions Pseudoprospective paraclinical integration of fully automated CNN-based detection of suspicious lesions on prostate multiparametric MRI was demonstrated and showed good acceptance among residents, whereas no significant improvement in resident performance was found. General CNN performance was preserved despite an observed shift in CNN calibration, identifying the requirement for continuous quality control and recalibration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木谦发布了新的文献求助10
刚刚
1秒前
受伤破茧发布了新的文献求助10
3秒前
小二郎应助yummy采纳,获得10
3秒前
Gdddd完成签到,获得积分10
4秒前
完美世界应助jerry_x采纳,获得10
4秒前
活力皮皮虾完成签到,获得积分10
4秒前
4秒前
蟒玉朝天完成签到 ,获得积分10
5秒前
1111完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助30
6秒前
7秒前
Orange应助a553355采纳,获得10
8秒前
9秒前
Hcc发布了新的文献求助10
9秒前
1111发布了新的文献求助10
10秒前
10秒前
10秒前
呆萌的傲之完成签到,获得积分10
10秒前
隐形的星月完成签到,获得积分20
11秒前
JamesPei应助受伤破茧采纳,获得10
11秒前
152完成签到 ,获得积分10
11秒前
12秒前
12秒前
CipherSage应助潇洒斑马采纳,获得30
13秒前
13秒前
张启凤完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
大轩发布了新的文献求助10
14秒前
15秒前
命苦科研人完成签到,获得积分10
16秒前
a553355发布了新的文献求助10
16秒前
111发布了新的文献求助10
18秒前
20秒前
one111发布了新的文献求助10
20秒前
今后应助你好采纳,获得10
21秒前
DS发布了新的文献求助50
22秒前
gugugu发布了新的文献求助10
23秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729040
求助须知:如何正确求助?哪些是违规求助? 5315724
关于积分的说明 15315600
捐赠科研通 4876049
什么是DOI,文献DOI怎么找? 2619186
邀请新用户注册赠送积分活动 1568758
关于科研通互助平台的介绍 1525247