Pseudoprospective Paraclinical Interaction of Radiology Residents With a Deep Learning System for Prostate Cancer Detection

麦克内马尔试验 医学 前列腺癌 接收机工作特性 前列腺 磁共振成像 多参数磁共振成像 前列腺活检 卷积神经网络 放射科 活检 核医学 癌症 人工智能 内科学 计算机科学 统计 数学
作者
Kevin Sun Zhang,Patrick Schelb,Nils Netzer,Anoshirwan Andrej Tavakoli,Myriam Keymling,Eckhard Wehrse,Robert Hog,Lukas T. Rotkopf,Markus Wennmann,Philip Glemser,Heidi Thierjung,Nikolaus von Knebel Doeberitz,Jens Kleesiek,Magdalena Görtz,Viktoria Schütz,Thomas Hielscher,Albrecht Stenzinger,Markus Hohenfellner,Heinz‐Peter Schlemmer,Klaus Maier‐Hein
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
卷期号:57 (9): 601-612 被引量:8
标识
DOI:10.1097/rli.0000000000000878
摘要

Objectives The aim of this study was to estimate the prospective utility of a previously retrospectively validated convolutional neural network (CNN) for prostate cancer (PC) detection on prostate magnetic resonance imaging (MRI). Materials and Methods The biparametric (T2-weighted and diffusion-weighted) portion of clinical multiparametric prostate MRI from consecutive men included between November 2019 and September 2020 was fully automatically and individually analyzed by a CNN briefly after image acquisition (pseudoprospective design). Radiology residents performed 2 research Prostate Imaging Reporting and Data System (PI-RADS) assessments of the multiparametric dataset independent from clinical reporting (paraclinical design) before and after review of the CNN results and completed a survey. Presence of clinically significant PC was determined by the presence of an International Society of Urological Pathology grade 2 or higher PC on combined targeted and extended systematic transperineal MRI/transrectal ultrasound fusion biopsy. Sensitivities and specificities on a patient and prostate sextant basis were compared using the McNemar test and compared with the receiver operating characteristic (ROC) curve of CNN. Survey results were summarized as absolute counts and percentages. Results A total of 201 men were included. The CNN achieved an ROC area under the curve of 0.77 on a patient basis. Using PI-RADS ≥3-emulating probability threshold (c3), CNN had a patient-based sensitivity of 81.8% and specificity of 54.8%, not statistically different from the current clinical routine PI-RADS ≥4 assessment at 90.9% and 54.8%, respectively ( P = 0.30/ P = 1.0). In general, residents achieved similar sensitivity and specificity before and after CNN review. On a prostate sextant basis, clinical assessment possessed the highest ROC area under the curve of 0.82, higher than CNN (AUC = 0.76, P = 0.21) and significantly higher than resident performance before and after CNN review (AUC = 0.76 / 0.76, P ≤ 0.03). The resident survey indicated CNN to be helpful and clinically useful. Conclusions Pseudoprospective paraclinical integration of fully automated CNN-based detection of suspicious lesions on prostate multiparametric MRI was demonstrated and showed good acceptance among residents, whereas no significant improvement in resident performance was found. General CNN performance was preserved despite an observed shift in CNN calibration, identifying the requirement for continuous quality control and recalibration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助mildjorker采纳,获得10
刚刚
贾克斯完成签到,获得积分20
1秒前
量子星尘发布了新的文献求助10
1秒前
yuanshl1985发布了新的文献求助10
1秒前
ljy应助成功上岸采纳,获得10
1秒前
2秒前
2秒前
3秒前
3秒前
3秒前
4秒前
悠悠发布了新的文献求助30
4秒前
4秒前
wanci应助坦率的咖啡豆采纳,获得10
4秒前
4秒前
玉麒麟完成签到,获得积分0
4秒前
爱吃米线发布了新的文献求助10
4秒前
5秒前
浮生完成签到,获得积分10
5秒前
研ZZ发布了新的文献求助10
5秒前
Yuan_n发布了新的文献求助10
5秒前
roclie发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
降臣完成签到,获得积分10
7秒前
7秒前
Sun完成签到,获得积分10
8秒前
six_dog完成签到,获得积分10
8秒前
8秒前
小马甲应助独特的高山采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
独特的鱼发布了新的文献求助10
9秒前
夏硕完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
情怀应助百十余采纳,获得10
10秒前
10秒前
six_dog发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661387
求助须知:如何正确求助?哪些是违规求助? 4838678
关于积分的说明 15095847
捐赠科研通 4820153
什么是DOI,文献DOI怎么找? 2579773
邀请新用户注册赠送积分活动 1534034
关于科研通互助平台的介绍 1492769