Simultaneous fault diagnosis for aircraft engine using multi-label learning

断层(地质) 故障检测与隔离 可靠性(半导体) 计算机科学 故障覆盖率 工程类 人工智能 功率(物理) 执行机构 地质学 物理 电气工程 量子力学 地震学 电子线路
作者
Bing Li,Yong-Ping Zhao
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part I: Journal Of Systems And Control Engineering [SAGE Publishing]
卷期号:236 (7): 1355-1371 被引量:4
标识
DOI:10.1177/09596518221085756
摘要

Fault detection and isolation system is crucial for the safety and reliability of aircraft engine. Traditional techniques of data-driven fault diagnosis for aircraft engine mainly focus on single fault diagnosis problems by means of the single-label learning strategy. However, the simultaneous fault diagnosis problems cannot be ignored in reality. In this research, two data-driven approaches based on multi-label learning and support vector machine are proposed to address the simultaneous fault diagnosis for an aircraft engine. Given that the simultaneous fault data are more difficult to obtain than single fault data, the proposed approaches have the ability to diagnose both single fault and simultaneous fault for aircraft engine when the fault diagnosis system is trained using single fault data only. The experimental results show that the proposed approaches can diagnose the simultaneous fault for an aircraft engine with high accuracy requiring low computation burden and a small number of single fault training data. In addition, the supplementary experiment confirms that the diagnosis accuracy of the proposed methods can be further improved by adding a small amount of the simultaneous fault data into the training dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mengqing完成签到 ,获得积分10
刚刚
1秒前
1秒前
chrisio应助蛋蛋白采纳,获得10
2秒前
2秒前
在水一方应助SHIKI采纳,获得10
2秒前
battle完成签到 ,获得积分10
2秒前
2秒前
香蕉觅云应助liu采纳,获得10
3秒前
小蘑菇应助高翔采纳,获得10
4秒前
corainder发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
Wow发布了新的文献求助10
5秒前
Lucas应助SZY采纳,获得10
6秒前
6秒前
FashionBoy应助谢同学采纳,获得10
6秒前
6秒前
6秒前
所所应助Sayhai采纳,获得10
6秒前
7秒前
有求必_应发布了新的文献求助10
7秒前
暮光不ling发布了新的文献求助10
8秒前
8秒前
孤独的夜行喵关注了科研通微信公众号
8秒前
8秒前
8秒前
mia发布了新的文献求助10
8秒前
8秒前
我的白起是国服完成签到 ,获得积分10
9秒前
蛋蛋白完成签到,获得积分20
10秒前
个性的紫菜应助yulia采纳,获得20
10秒前
10秒前
Gotyababy发布了新的文献求助10
10秒前
11秒前
11秒前
pakono发布了新的文献求助20
12秒前
科研通AI5应助温柔的婷采纳,获得30
12秒前
Sara发布了新的文献求助10
13秒前
斑驳发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403