Feature Points Recognition of Computerized Numerical Control Machining Tool Path Based on Deep Learning

特征(语言学) 计算机科学 机械加工 人工智能 卷积神经网络 管道(软件) 插值(计算机图形学) 路径(计算) 数控 点(几何) 模式识别(心理学) 精确性和召回率 工程类 数学 运动(物理) 哲学 机械工程 程序设计语言 语言学 几何学
作者
Pengcheng Hu,Yingbo Song,Huicheng Zhou,Jiejun Xie,Chenglei Zhang
出处
期刊:Computer Aided Design [Elsevier]
卷期号:149: 103273-103273 被引量:2
标识
DOI:10.1016/j.cad.2022.103273
摘要

In the processes of feed rate planning, interpolation and tool path optimization of Computerized Numerical Control (CNC) machining, feature point recognition of tool path is an essential operation. Accurate identification of feature points is the premise for partitioning the tool path that affects the accuracy and efficiency of CNC machining. Current research on feature point recognition of tool path mainly relies on the hand-crafted approach, of which the result is sensitive to the values of some manually defined threshold. Therefore the approach heavily relies on the human experience. In this paper, a novel deep learning-based approach is presented that can automatically and precisely recognize the feature point of the tool path. A set of geometric descriptors is first defined for each Cutter Location (CL) point and then conversed to images that feed to the deep learning pipeline. A residual learning-based Convolutional Neural Network (CNN) called Feature Point CNN (FP-CNN) is designed that takes the conversed images as input and the recognized results as output. Extensive experiments on some industrial parts are conducted to validate the effectiveness and the advantage of the proposed network. Results show that the proposed approach has good performance in identifying accuracy and recall, which is much superior to two types of benchmarks and does not involve any human intervention.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文龙完成签到,获得积分20
刚刚
ZSC完成签到,获得积分10
刚刚
劳伦斯发布了新的文献求助10
刚刚
lee完成签到 ,获得积分10
1秒前
1秒前
打打应助jackma1采纳,获得10
1秒前
leeza发布了新的文献求助10
1秒前
李健的小迷弟应助leisj采纳,获得10
2秒前
anubisi完成签到,获得积分10
2秒前
搜集达人应助花陵采纳,获得10
2秒前
Decheng_xiao发布了新的文献求助10
3秒前
大模型应助钟雨彤采纳,获得10
3秒前
艾雪给艾雪的求助进行了留言
3秒前
4秒前
4秒前
4秒前
甜美静白发布了新的文献求助10
4秒前
zigzag发布了新的文献求助10
4秒前
WCM完成签到,获得积分10
5秒前
5秒前
马里奥爱科研完成签到,获得积分10
5秒前
5秒前
树下友人完成签到,获得积分10
5秒前
5秒前
HXU发布了新的文献求助10
6秒前
顾矜应助我在祁连山下采纳,获得10
6秒前
6秒前
ace完成签到,获得积分10
7秒前
7秒前
JZ完成签到,获得积分10
8秒前
8秒前
生气来找我完成签到,获得积分20
8秒前
山止川行发布了新的文献求助10
8秒前
9秒前
赘婿应助邢大志采纳,获得30
9秒前
Decheng_xiao完成签到,获得积分10
9秒前
9秒前
Chen发布了新的文献求助10
9秒前
Alan完成签到,获得积分10
10秒前
CipherSage应助usr123采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719543
求助须知:如何正确求助?哪些是违规求助? 5256663
关于积分的说明 15288927
捐赠科研通 4869380
什么是DOI,文献DOI怎么找? 2614754
邀请新用户注册赠送积分活动 1564750
关于科研通互助平台的介绍 1521972