亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adaptively Weighted k-Tuple Metric Network for Kinship Verification.

判别式 计算机科学 利用 杠杆(统计) 公制(单位) 人工智能 模式识别(心理学) 元组 卷积神经网络 概化理论 边距(机器学习) 理论计算机科学 关系(数据库) 机器学习
作者
Sheng Huang,Jingkai Lin,Luwen Huangfu,Yun Xing,Junlin Hu,Daniel Dajun Zeng
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tcyb.2022.3163707
摘要

Facial image-based kinship verification is a rapidly growing field in computer vision and biometrics. The key to determining whether a pair of facial images has a kin relation is to train a model that can enlarge the margin between the faces that have no kin relation while reducing the distance between faces that have a kin relation. Most existing approaches primarily exploit duplet (i.e., two input samples without cross pair) or triplet (i.e., single negative pair for each positive pair with low-order cross pair) information, omitting discriminative features from multiple negative pairs. These approaches suffer from weak generalizability, resulting in unsatisfactory performance. Inspired by human visual systems that incorporate both low-order and high-order cross-pair information from local and global perspectives, we propose to leverage high-order cross-pair features and develop a novel end-to-end deep learning model called the adaptively weighted k-tuple metric network (AWk-TMN). Our main contributions are three-fold. First, a novel cross-pair metric learning loss based on k-tuplet loss is introduced. It naturally captures both the low-order and high-order discriminative features from multiple negative pairs. Second, an adaptively weighted scheme is formulated to better highlight hard negative examples among multiple negative pairs, leading to enhanced performance. Third, the model utilizes multiple levels of convolutional features and jointly optimizes feature and metric learning to further exploit the low-order and high-order representational power. Extensive experimental results on three popular kinship verification datasets demonstrate the effectiveness of our proposed AWk-TMN approach compared with several state-of-the-art approaches. The source codes and models are released.1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光合作用完成签到,获得积分10
刚刚
务实书包完成签到,获得积分10
6秒前
爆米花应助小智采纳,获得10
7秒前
10秒前
浮游应助激情的代曼采纳,获得10
12秒前
aaron完成签到,获得积分10
13秒前
16秒前
18秒前
小龙完成签到,获得积分10
20秒前
斯文败类应助科研猫头鹰采纳,获得10
22秒前
小智发布了新的文献求助10
23秒前
nxy完成签到 ,获得积分10
27秒前
Owen应助EaRnn采纳,获得10
28秒前
玫瑰遇上奶油完成签到 ,获得积分10
40秒前
赵雨欣完成签到,获得积分10
42秒前
51秒前
52秒前
小巧尔曼完成签到,获得积分10
52秒前
52秒前
EaRnn发布了新的文献求助10
56秒前
chenzheng发布了新的文献求助10
58秒前
可爱的函函应助Karma采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
1分钟前
William_l_c完成签到,获得积分10
1分钟前
CipherSage应助Karma采纳,获得10
1分钟前
KaK完成签到,获得积分20
1分钟前
小二郎应助美满惜寒采纳,获得10
1分钟前
1分钟前
sunny发布了新的文献求助10
1分钟前
edtaa完成签到 ,获得积分10
1分钟前
飘逸的雁露完成签到,获得积分10
1分钟前
2分钟前
美满惜寒发布了新的文献求助10
2分钟前
汉堡包应助契合采纳,获得10
2分钟前
CATH完成签到 ,获得积分10
2分钟前
momo完成签到,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413082
求助须知:如何正确求助?哪些是违规求助? 4530302
关于积分的说明 14122792
捐赠科研通 4445232
什么是DOI,文献DOI怎么找? 2439148
邀请新用户注册赠送积分活动 1431216
关于科研通互助平台的介绍 1408578