Adaptively Weighted k-Tuple Metric Network for Kinship Verification.

判别式 计算机科学 利用 杠杆(统计) 公制(单位) 人工智能 模式识别(心理学) 元组 卷积神经网络 概化理论 边距(机器学习) 理论计算机科学 关系(数据库) 机器学习
作者
Sheng Huang,Jingkai Lin,Luwen Huangfu,Yun Xing,Junlin Hu,Daniel Dajun Zeng
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tcyb.2022.3163707
摘要

Facial image-based kinship verification is a rapidly growing field in computer vision and biometrics. The key to determining whether a pair of facial images has a kin relation is to train a model that can enlarge the margin between the faces that have no kin relation while reducing the distance between faces that have a kin relation. Most existing approaches primarily exploit duplet (i.e., two input samples without cross pair) or triplet (i.e., single negative pair for each positive pair with low-order cross pair) information, omitting discriminative features from multiple negative pairs. These approaches suffer from weak generalizability, resulting in unsatisfactory performance. Inspired by human visual systems that incorporate both low-order and high-order cross-pair information from local and global perspectives, we propose to leverage high-order cross-pair features and develop a novel end-to-end deep learning model called the adaptively weighted k-tuple metric network (AWk-TMN). Our main contributions are three-fold. First, a novel cross-pair metric learning loss based on k-tuplet loss is introduced. It naturally captures both the low-order and high-order discriminative features from multiple negative pairs. Second, an adaptively weighted scheme is formulated to better highlight hard negative examples among multiple negative pairs, leading to enhanced performance. Third, the model utilizes multiple levels of convolutional features and jointly optimizes feature and metric learning to further exploit the low-order and high-order representational power. Extensive experimental results on three popular kinship verification datasets demonstrate the effectiveness of our proposed AWk-TMN approach compared with several state-of-the-art approaches. The source codes and models are released.1.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怡然的以筠完成签到,获得积分10
刚刚
刚刚
1秒前
ding应助lanlan采纳,获得10
1秒前
林途完成签到,获得积分10
1秒前
2秒前
3秒前
王碱发布了新的文献求助10
3秒前
MS903发布了新的文献求助10
3秒前
科研小lese发布了新的文献求助10
4秒前
mm发布了新的文献求助10
4秒前
4秒前
4秒前
冷月fan完成签到,获得积分10
5秒前
6秒前
6秒前
Owen应助朴素的闭月采纳,获得10
6秒前
子车茗应助wangrui采纳,获得30
6秒前
33发布了新的文献求助10
7秒前
苦尽甘来完成签到,获得积分10
7秒前
yjy完成签到,获得积分10
7秒前
8秒前
丘奇发布了新的文献求助10
9秒前
优雅山柏发布了新的文献求助10
9秒前
9秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
BowieHuang应助木子李采纳,获得10
11秒前
吕奎完成签到,获得积分10
12秒前
12秒前
善学以致用应助自由笑晴采纳,获得10
14秒前
15秒前
星威发布了新的文献求助10
15秒前
ssxw发布了新的文献求助10
16秒前
Ava应助Navan采纳,获得20
16秒前
大模型应助吕奎采纳,获得10
16秒前
李Tt发布了新的文献求助10
16秒前
李爱国应助KLAY采纳,获得10
16秒前
科研通AI6应助开朗盼兰采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594416
求助须知:如何正确求助?哪些是违规求助? 4680089
关于积分的说明 14813111
捐赠科研通 4647162
什么是DOI,文献DOI怎么找? 2534928
邀请新用户注册赠送积分活动 1502981
关于科研通互助平台的介绍 1469521