已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Adaptively Weighted k-Tuple Metric Network for Kinship Verification.

判别式 计算机科学 利用 杠杆(统计) 公制(单位) 人工智能 模式识别(心理学) 元组 卷积神经网络 概化理论 边距(机器学习) 理论计算机科学 关系(数据库) 机器学习
作者
Sheng Huang,Jingkai Lin,Luwen Huangfu,Yun Xing,Junlin Hu,Daniel Dajun Zeng
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tcyb.2022.3163707
摘要

Facial image-based kinship verification is a rapidly growing field in computer vision and biometrics. The key to determining whether a pair of facial images has a kin relation is to train a model that can enlarge the margin between the faces that have no kin relation while reducing the distance between faces that have a kin relation. Most existing approaches primarily exploit duplet (i.e., two input samples without cross pair) or triplet (i.e., single negative pair for each positive pair with low-order cross pair) information, omitting discriminative features from multiple negative pairs. These approaches suffer from weak generalizability, resulting in unsatisfactory performance. Inspired by human visual systems that incorporate both low-order and high-order cross-pair information from local and global perspectives, we propose to leverage high-order cross-pair features and develop a novel end-to-end deep learning model called the adaptively weighted k-tuple metric network (AWk-TMN). Our main contributions are three-fold. First, a novel cross-pair metric learning loss based on k-tuplet loss is introduced. It naturally captures both the low-order and high-order discriminative features from multiple negative pairs. Second, an adaptively weighted scheme is formulated to better highlight hard negative examples among multiple negative pairs, leading to enhanced performance. Third, the model utilizes multiple levels of convolutional features and jointly optimizes feature and metric learning to further exploit the low-order and high-order representational power. Extensive experimental results on three popular kinship verification datasets demonstrate the effectiveness of our proposed AWk-TMN approach compared with several state-of-the-art approaches. The source codes and models are released.1.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助天真的路灯采纳,获得10
刚刚
jinan发布了新的文献求助10
刚刚
syyw2021发布了新的文献求助10
3秒前
null应助JackWu采纳,获得10
4秒前
6秒前
9秒前
11秒前
11秒前
科研小巴发布了新的文献求助10
12秒前
小粉红wow~~~完成签到,获得积分10
12秒前
Ye发布了新的文献求助10
13秒前
zsmj23完成签到 ,获得积分0
13秒前
meeteryu完成签到,获得积分10
15秒前
16秒前
16秒前
蟒玉朝天完成签到 ,获得积分10
17秒前
檀江完成签到,获得积分10
18秒前
inRe完成签到,获得积分10
24秒前
26秒前
TiAmo完成签到 ,获得积分10
27秒前
sweetm完成签到,获得积分10
28秒前
善良的嫣完成签到 ,获得积分10
28秒前
橘子海完成签到 ,获得积分10
31秒前
成就书雪完成签到,获得积分0
31秒前
甜美的秋尽完成签到,获得积分10
31秒前
英俊的铭应助虾球采纳,获得30
31秒前
健忘捕完成签到 ,获得积分10
31秒前
Cosmos发布了新的文献求助10
33秒前
physic-完成签到,获得积分10
34秒前
gtgyh完成签到 ,获得积分10
38秒前
Wtony完成签到 ,获得积分10
39秒前
40秒前
高兴的丝完成签到 ,获得积分10
40秒前
41秒前
44秒前
inRe发布了新的文献求助10
45秒前
weibo完成签到,获得积分10
46秒前
47秒前
广州小肥羊完成签到 ,获得积分10
47秒前
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627676
求助须知:如何正确求助?哪些是违规求助? 4714380
关于积分的说明 14962946
捐赠科研通 4785322
什么是DOI,文献DOI怎么找? 2555072
邀请新用户注册赠送积分活动 1516447
关于科研通互助平台的介绍 1476841