已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Adaptively Weighted k-Tuple Metric Network for Kinship Verification.

判别式 计算机科学 利用 杠杆(统计) 公制(单位) 人工智能 模式识别(心理学) 元组 卷积神经网络 概化理论 边距(机器学习) 理论计算机科学 关系(数据库) 机器学习
作者
Sheng Huang,Jingkai Lin,Luwen Huangfu,Yun Xing,Junlin Hu,Daniel Dajun Zeng
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tcyb.2022.3163707
摘要

Facial image-based kinship verification is a rapidly growing field in computer vision and biometrics. The key to determining whether a pair of facial images has a kin relation is to train a model that can enlarge the margin between the faces that have no kin relation while reducing the distance between faces that have a kin relation. Most existing approaches primarily exploit duplet (i.e., two input samples without cross pair) or triplet (i.e., single negative pair for each positive pair with low-order cross pair) information, omitting discriminative features from multiple negative pairs. These approaches suffer from weak generalizability, resulting in unsatisfactory performance. Inspired by human visual systems that incorporate both low-order and high-order cross-pair information from local and global perspectives, we propose to leverage high-order cross-pair features and develop a novel end-to-end deep learning model called the adaptively weighted k-tuple metric network (AWk-TMN). Our main contributions are three-fold. First, a novel cross-pair metric learning loss based on k-tuplet loss is introduced. It naturally captures both the low-order and high-order discriminative features from multiple negative pairs. Second, an adaptively weighted scheme is formulated to better highlight hard negative examples among multiple negative pairs, leading to enhanced performance. Third, the model utilizes multiple levels of convolutional features and jointly optimizes feature and metric learning to further exploit the low-order and high-order representational power. Extensive experimental results on three popular kinship verification datasets demonstrate the effectiveness of our proposed AWk-TMN approach compared with several state-of-the-art approaches. The source codes and models are released.1.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鹿小新完成签到 ,获得积分0
1秒前
1秒前
Jackey发布了新的文献求助10
1秒前
世良发布了新的文献求助10
2秒前
3秒前
5秒前
世良发布了新的文献求助10
8秒前
森森发布了新的文献求助10
8秒前
美琪完成签到,获得积分10
10秒前
zozox完成签到 ,获得积分10
13秒前
14秒前
ceeray23应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
ceeray23应助科研通管家采纳,获得10
15秒前
ceeray23应助科研通管家采纳,获得10
15秒前
单薄青亦发布了新的文献求助10
17秒前
20秒前
酉默发布了新的文献求助10
20秒前
Yikao完成签到 ,获得积分10
23秒前
25秒前
111完成签到 ,获得积分10
26秒前
瀅瀅发布了新的文献求助10
26秒前
隐形曼青应助小恐龙采纳,获得10
29秒前
Oculus完成签到 ,获得积分10
29秒前
31秒前
小丸子和zz完成签到 ,获得积分10
31秒前
王超发布了新的文献求助10
31秒前
33秒前
年鱼精完成签到 ,获得积分10
33秒前
科研通AI6应助keyan采纳,获得10
36秒前
犹豫幻丝完成签到,获得积分10
37秒前
科研废物完成签到 ,获得积分10
38秒前
韩星发布了新的文献求助10
40秒前
41秒前
Tanya47应助xhkxz采纳,获得10
42秒前
初雪完成签到,获得积分10
44秒前
叶子发布了新的文献求助10
44秒前
w1x2123完成签到,获得积分10
47秒前
1234567完成签到,获得积分10
49秒前
李爱国应助cenghao采纳,获得10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650543
求助须知:如何正确求助?哪些是违规求助? 4780917
关于积分的说明 15052239
捐赠科研通 4809450
什么是DOI,文献DOI怎么找? 2572248
邀请新用户注册赠送积分活动 1528412
关于科研通互助平台的介绍 1487268