Adaptively Weighted k-Tuple Metric Network for Kinship Verification.

判别式 计算机科学 利用 杠杆(统计) 公制(单位) 人工智能 模式识别(心理学) 元组 卷积神经网络 概化理论 边距(机器学习) 理论计算机科学 关系(数据库) 机器学习
作者
Sheng Huang,Jingkai Lin,Luwen Huangfu,Yun Xing,Junlin Hu,Daniel Dajun Zeng
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tcyb.2022.3163707
摘要

Facial image-based kinship verification is a rapidly growing field in computer vision and biometrics. The key to determining whether a pair of facial images has a kin relation is to train a model that can enlarge the margin between the faces that have no kin relation while reducing the distance between faces that have a kin relation. Most existing approaches primarily exploit duplet (i.e., two input samples without cross pair) or triplet (i.e., single negative pair for each positive pair with low-order cross pair) information, omitting discriminative features from multiple negative pairs. These approaches suffer from weak generalizability, resulting in unsatisfactory performance. Inspired by human visual systems that incorporate both low-order and high-order cross-pair information from local and global perspectives, we propose to leverage high-order cross-pair features and develop a novel end-to-end deep learning model called the adaptively weighted k-tuple metric network (AWk-TMN). Our main contributions are three-fold. First, a novel cross-pair metric learning loss based on k-tuplet loss is introduced. It naturally captures both the low-order and high-order discriminative features from multiple negative pairs. Second, an adaptively weighted scheme is formulated to better highlight hard negative examples among multiple negative pairs, leading to enhanced performance. Third, the model utilizes multiple levels of convolutional features and jointly optimizes feature and metric learning to further exploit the low-order and high-order representational power. Extensive experimental results on three popular kinship verification datasets demonstrate the effectiveness of our proposed AWk-TMN approach compared with several state-of-the-art approaches. The source codes and models are released.1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪寒荷完成签到 ,获得积分10
1秒前
菠萝完成签到 ,获得积分10
1秒前
辣辣完成签到,获得积分10
1秒前
2秒前
英姑应助不可靠月亮采纳,获得10
3秒前
搜集达人应助科研小达人采纳,获得10
4秒前
昭昭完成签到,获得积分10
4秒前
DD完成签到,获得积分10
4秒前
芒果好高完成签到,获得积分10
5秒前
6秒前
北执完成签到,获得积分10
7秒前
7秒前
小皮皮完成签到,获得积分10
8秒前
一只有机狗完成签到,获得积分10
10秒前
单薄月饼完成签到,获得积分10
11秒前
wdx完成签到,获得积分10
11秒前
yangy115完成签到,获得积分10
11秒前
小白狮666发布了新的文献求助80
11秒前
lanrete完成签到,获得积分10
12秒前
13秒前
从容藏今完成签到 ,获得积分10
13秒前
13秒前
桐1210发布了新的文献求助10
13秒前
13秒前
耍酷的白桃完成签到,获得积分20
13秒前
俊逸海豚完成签到 ,获得积分10
16秒前
owen完成签到,获得积分20
17秒前
铁甲小杨完成签到,获得积分10
17秒前
包容皓轩发布了新的文献求助10
18秒前
吴咪发布了新的文献求助10
18秒前
昭昭发布了新的文献求助10
18秒前
研友_8KX15L发布了新的文献求助10
19秒前
乌云发布了新的文献求助10
19秒前
LL完成签到 ,获得积分10
20秒前
Saraba完成签到,获得积分10
20秒前
mengloo完成签到,获得积分10
23秒前
领导范儿应助贪玩的复天采纳,获得10
26秒前
DW完成签到,获得积分10
27秒前
传统的松鼠完成签到 ,获得积分10
29秒前
大舟Austin完成签到 ,获得积分10
30秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248917
求助须知:如何正确求助?哪些是违规求助? 2892299
关于积分的说明 8270565
捐赠科研通 2560582
什么是DOI,文献DOI怎么找? 1389114
科研通“疑难数据库(出版商)”最低求助积分说明 651004
邀请新用户注册赠送积分活动 627855