Synergy between machine learning and natural products cheminformatics: Application to the lead discovery of anthraquinone derivatives

化学信息学 化学空间 药物发现 虚拟筛选 可药性 计算机科学 药效团 生化工程 化学 组合化学 计算生物学 人工智能 机器学习 计算化学 立体化学 工程类 生物 生物化学 基因
作者
Said Moshawih,Hui Poh Goh,Nurolaini Kifli,Azam Che Idris,Hayati Yassin,Vijay Kotra,Khang Wen Goh,Kai Bin Liew,Long Chiau Ming
出处
期刊:Chemical Biology & Drug Design [Wiley]
卷期号:100 (2): 185-217 被引量:14
标识
DOI:10.1111/cbdd.14062
摘要

Abstract Cheminformatics utilizing machine learning (ML) techniques have opened up a new horizon in drug discovery. This is owing to vast chemical space expansion with rocketing numbers of expected hits and lead compounds that match druggable macromolecular targets, in particular from natural compounds. Due to the natural products’ (NP) structural complexity, uniqueness, and diversity, they could occupy a bigger space in pharmaceuticals, allowing the industry to pursue more selective leads in the nanomolar range of binding affinity. ML is an essential part of each step of the drug design pipeline, such as target prediction, compound library preparation, and lead optimization. Notably, molecular mechanic and dynamic simulations, induced docking, and free energy perturbations are essential in predicting best binding poses, binding free energy values, and molecular mechanics force fields. Those applications have leveraged from artificial intelligence (AI), which decreases the computational costs required for such costly simulations. This review aimed to describe chemical space and compound libraries related to NPs. High‐throughput screening utilized for fractionating NPs and high‐throughput virtual screening and their strategies, and significance, are reviewed. Particular emphasis was given to AI approaches, ML tools, algorithms, and techniques, especially in drug discovery of macrocyclic compounds and approaches in computer‐aided and ML‐based drug discovery. Anthraquinone derivatives were discussed as a source of new lead compounds that can be developed using ML tools for diverse medicinal uses such as cancer, infectious diseases, and metabolic disorders. Furthermore, the power of principal component analysis in understanding relevant protein conformations, and molecular modeling of protein–ligand interaction were also presented. Apart from being a concise reference for cheminformatics, this review is a useful text to understand the application of ML‐based algorithms to molecular dynamics simulation and in silico absorption, distribution, metabolism, excretion, and toxicity prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
MrLi发布了新的文献求助10
2秒前
lz发布了新的文献求助10
2秒前
Peng发布了新的文献求助10
2秒前
wanci应助喵酱采纳,获得10
3秒前
3秒前
lalala发布了新的文献求助10
3秒前
雅雅发布了新的文献求助50
4秒前
4秒前
amysteryboy发布了新的文献求助10
4秒前
5秒前
5秒前
所所应助pigwising采纳,获得10
5秒前
6秒前
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
完美世界应助科研通管家采纳,获得10
7秒前
RebeccaHe应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
7秒前
orixero应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
爆米花应助MrLi采纳,获得10
7秒前
小二郎应助zyfzyf采纳,获得10
7秒前
snail01完成签到,获得积分10
8秒前
Surge发布了新的文献求助10
8秒前
Shapee应助杨旭采纳,获得10
8秒前
张张发布了新的文献求助10
9秒前
llllqqqq完成签到,获得积分10
9秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128551
求助须知:如何正确求助?哪些是违规求助? 2779326
关于积分的说明 7742499
捐赠科研通 2434629
什么是DOI,文献DOI怎么找? 1293580
科研通“疑难数据库(出版商)”最低求助积分说明 623344
版权声明 600514