Synergy between machine learning and natural products cheminformatics: Application to the lead discovery of anthraquinone derivatives

化学信息学 化学空间 药物发现 虚拟筛选 可药性 计算机科学 药效团 生化工程 化学 组合化学 计算生物学 人工智能 机器学习 计算化学 立体化学 工程类 生物 基因 生物化学
作者
Said Moshawih,Hui Poh Goh,Nurolaini Kifli,Azam Che Idris,Hayati Yassin,Vijay Kotra,Khang Wen Goh,Kai Bin Liew,Long Chiau Ming
出处
期刊:Chemical Biology & Drug Design [Wiley]
卷期号:100 (2): 185-217 被引量:15
标识
DOI:10.1111/cbdd.14062
摘要

Cheminformatics utilizing machine learning (ML) techniques have opened up a new horizon in drug discovery. This is owing to vast chemical space expansion with rocketing numbers of expected hits and lead compounds that match druggable macromolecular targets, in particular from natural compounds. Due to the natural products' (NP) structural complexity, uniqueness, and diversity, they could occupy a bigger space in pharmaceuticals, allowing the industry to pursue more selective leads in the nanomolar range of binding affinity. ML is an essential part of each step of the drug design pipeline, such as target prediction, compound library preparation, and lead optimization. Notably, molecular mechanic and dynamic simulations, induced docking, and free energy perturbations are essential in predicting best binding poses, binding free energy values, and molecular mechanics force fields. Those applications have leveraged from artificial intelligence (AI), which decreases the computational costs required for such costly simulations. This review aimed to describe chemical space and compound libraries related to NPs. High-throughput screening utilized for fractionating NPs and high-throughput virtual screening and their strategies, and significance, are reviewed. Particular emphasis was given to AI approaches, ML tools, algorithms, and techniques, especially in drug discovery of macrocyclic compounds and approaches in computer-aided and ML-based drug discovery. Anthraquinone derivatives were discussed as a source of new lead compounds that can be developed using ML tools for diverse medicinal uses such as cancer, infectious diseases, and metabolic disorders. Furthermore, the power of principal component analysis in understanding relevant protein conformations, and molecular modeling of protein-ligand interaction were also presented. Apart from being a concise reference for cheminformatics, this review is a useful text to understand the application of ML-based algorithms to molecular dynamics simulation and in silico absorption, distribution, metabolism, excretion, and toxicity prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cwy发布了新的文献求助10
1秒前
wz发布了新的文献求助10
1秒前
balzacsun发布了新的文献求助10
3秒前
JamesPei应助星星采纳,获得10
3秒前
4秒前
4秒前
laodie完成签到,获得积分10
5秒前
彭于晏应助ipeakkka采纳,获得10
5秒前
5秒前
敏感的芷发布了新的文献求助10
5秒前
susan发布了新的文献求助10
5秒前
6秒前
李爱国应助轻松的贞采纳,获得10
6秒前
wz完成签到,获得积分10
7秒前
子川完成签到 ,获得积分10
7秒前
怕孤独的鹭洋完成签到,获得积分10
7秒前
8秒前
耍酷的夏云完成签到,获得积分10
8秒前
laodie发布了新的文献求助10
9秒前
9秒前
小达完成签到,获得积分10
9秒前
nenoaowu发布了新的文献求助10
9秒前
文章要有性价比完成签到,获得积分10
10秒前
俏皮半烟完成签到,获得积分10
10秒前
Aki发布了新的文献求助10
10秒前
111完成签到,获得积分10
12秒前
耗尽完成签到,获得积分10
12秒前
烂漫驳发布了新的文献求助10
14秒前
轻松的贞完成签到,获得积分10
15秒前
李健应助balzacsun采纳,获得10
16秒前
轻松的悟空完成签到 ,获得积分10
18秒前
susan完成签到,获得积分10
19秒前
0029完成签到,获得积分10
21秒前
Aki完成签到,获得积分10
21秒前
21秒前
22秒前
23秒前
24秒前
LXR完成签到,获得积分10
26秒前
thchiang发布了新的文献求助10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824