Synergy between machine learning and natural products cheminformatics: Application to the lead discovery of anthraquinone derivatives

化学信息学 化学空间 药物发现 虚拟筛选 可药性 计算机科学 药效团 生化工程 化学 组合化学 计算生物学 人工智能 机器学习 计算化学 立体化学 工程类 生物 基因 生物化学
作者
Said Moshawih,Hui Poh Goh,Nurolaini Kifli,Azam Che Idris,Hayati Yassin,Vijay Kotra,Khang Wen Goh,Kai Bin Liew,Long Chiau Ming
出处
期刊:Chemical Biology & Drug Design [Wiley]
卷期号:100 (2): 185-217 被引量:16
标识
DOI:10.1111/cbdd.14062
摘要

Cheminformatics utilizing machine learning (ML) techniques have opened up a new horizon in drug discovery. This is owing to vast chemical space expansion with rocketing numbers of expected hits and lead compounds that match druggable macromolecular targets, in particular from natural compounds. Due to the natural products' (NP) structural complexity, uniqueness, and diversity, they could occupy a bigger space in pharmaceuticals, allowing the industry to pursue more selective leads in the nanomolar range of binding affinity. ML is an essential part of each step of the drug design pipeline, such as target prediction, compound library preparation, and lead optimization. Notably, molecular mechanic and dynamic simulations, induced docking, and free energy perturbations are essential in predicting best binding poses, binding free energy values, and molecular mechanics force fields. Those applications have leveraged from artificial intelligence (AI), which decreases the computational costs required for such costly simulations. This review aimed to describe chemical space and compound libraries related to NPs. High-throughput screening utilized for fractionating NPs and high-throughput virtual screening and their strategies, and significance, are reviewed. Particular emphasis was given to AI approaches, ML tools, algorithms, and techniques, especially in drug discovery of macrocyclic compounds and approaches in computer-aided and ML-based drug discovery. Anthraquinone derivatives were discussed as a source of new lead compounds that can be developed using ML tools for diverse medicinal uses such as cancer, infectious diseases, and metabolic disorders. Furthermore, the power of principal component analysis in understanding relevant protein conformations, and molecular modeling of protein-ligand interaction were also presented. Apart from being a concise reference for cheminformatics, this review is a useful text to understand the application of ML-based algorithms to molecular dynamics simulation and in silico absorption, distribution, metabolism, excretion, and toxicity prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tczw667完成签到,获得积分10
1秒前
榴下晨光发布了新的文献求助10
1秒前
辛俊辰发布了新的文献求助10
2秒前
6秒前
7秒前
8秒前
精明的忆灵完成签到,获得积分10
9秒前
echoxq完成签到 ,获得积分10
9秒前
10秒前
11秒前
11秒前
bnm发布了新的文献求助10
12秒前
12秒前
辉仔完成签到,获得积分10
15秒前
Lsy完成签到,获得积分10
15秒前
狂野的尔风完成签到,获得积分20
16秒前
17秒前
19秒前
CAOHOU应助U9A采纳,获得10
20秒前
阿喵完成签到,获得积分10
20秒前
20秒前
21秒前
21秒前
21秒前
香蕉觅云应助任性雨柏采纳,获得10
21秒前
22秒前
Hellenzz完成签到,获得积分20
22秒前
林森发布了新的文献求助10
22秒前
思源应助德国克大夫采纳,获得10
23秒前
司空元正完成签到 ,获得积分10
23秒前
辉仔发布了新的文献求助10
24秒前
Gu0F1完成签到 ,获得积分10
25秒前
26秒前
我是老大应助罗是一采纳,获得10
26秒前
善学以致用应助林森采纳,获得10
27秒前
科研通AI2S应助悲凉的初翠采纳,获得10
28秒前
锦鲤发布了新的文献求助10
30秒前
31秒前
精明凝海完成签到,获得积分10
33秒前
zsyf完成签到,获得积分10
34秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999793
求助须知:如何正确求助?哪些是违规求助? 3539210
关于积分的说明 11276221
捐赠科研通 3277890
什么是DOI,文献DOI怎么找? 1807763
邀请新用户注册赠送积分活动 884231
科研通“疑难数据库(出版商)”最低求助积分说明 810142