Synergy between machine learning and natural products cheminformatics: Application to the lead discovery of anthraquinone derivatives

化学信息学 化学空间 药物发现 虚拟筛选 可药性 计算机科学 药效团 生化工程 化学 组合化学 计算生物学 人工智能 机器学习 计算化学 立体化学 工程类 生物 生物化学 基因
作者
Said Moshawih,Hui Poh Goh,Nurolaini Kifli,Azam Che Idris,Hayati Yassin,Vijay Kotra,Khang Wen Goh,Kai Bin Liew,Long Chiau Ming
出处
期刊:Chemical Biology & Drug Design [Wiley]
卷期号:100 (2): 185-217 被引量:16
标识
DOI:10.1111/cbdd.14062
摘要

Cheminformatics utilizing machine learning (ML) techniques have opened up a new horizon in drug discovery. This is owing to vast chemical space expansion with rocketing numbers of expected hits and lead compounds that match druggable macromolecular targets, in particular from natural compounds. Due to the natural products' (NP) structural complexity, uniqueness, and diversity, they could occupy a bigger space in pharmaceuticals, allowing the industry to pursue more selective leads in the nanomolar range of binding affinity. ML is an essential part of each step of the drug design pipeline, such as target prediction, compound library preparation, and lead optimization. Notably, molecular mechanic and dynamic simulations, induced docking, and free energy perturbations are essential in predicting best binding poses, binding free energy values, and molecular mechanics force fields. Those applications have leveraged from artificial intelligence (AI), which decreases the computational costs required for such costly simulations. This review aimed to describe chemical space and compound libraries related to NPs. High-throughput screening utilized for fractionating NPs and high-throughput virtual screening and their strategies, and significance, are reviewed. Particular emphasis was given to AI approaches, ML tools, algorithms, and techniques, especially in drug discovery of macrocyclic compounds and approaches in computer-aided and ML-based drug discovery. Anthraquinone derivatives were discussed as a source of new lead compounds that can be developed using ML tools for diverse medicinal uses such as cancer, infectious diseases, and metabolic disorders. Furthermore, the power of principal component analysis in understanding relevant protein conformations, and molecular modeling of protein-ligand interaction were also presented. Apart from being a concise reference for cheminformatics, this review is a useful text to understand the application of ML-based algorithms to molecular dynamics simulation and in silico absorption, distribution, metabolism, excretion, and toxicity prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苗条馒头完成签到,获得积分10
刚刚
aaronpancn发布了新的文献求助10
刚刚
笨笨西装完成签到,获得积分10
刚刚
沉默听芹完成签到,获得积分10
1秒前
鱼汤完成签到,获得积分10
1秒前
ANN发布了新的文献求助10
3秒前
范yx发布了新的文献求助10
4秒前
AAAAL完成签到,获得积分10
4秒前
4秒前
iVosamo完成签到 ,获得积分10
5秒前
方琼燕完成签到 ,获得积分10
6秒前
机智猴完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
小黑完成签到,获得积分10
6秒前
7秒前
nonory完成签到,获得积分10
7秒前
阿湫完成签到,获得积分10
7秒前
7秒前
金金完成签到,获得积分10
7秒前
WXY完成签到,获得积分10
8秒前
cong完成签到,获得积分10
8秒前
至若春和景明完成签到,获得积分10
9秒前
xiaoxixixier完成签到 ,获得积分10
9秒前
飞飞完成签到,获得积分10
9秒前
Dromaeotroodon完成签到,获得积分10
10秒前
10秒前
10秒前
火星上的铃铛完成签到,获得积分10
11秒前
jianjiao完成签到,获得积分10
12秒前
俭朴外绣发布了新的文献求助10
12秒前
13秒前
Pessimist发布了新的文献求助10
13秒前
YZFR1关注了科研通微信公众号
14秒前
风的味道完成签到,获得积分10
15秒前
西安浴日光能赵炜完成签到,获得积分10
15秒前
范yx发布了新的文献求助10
16秒前
jack1511完成签到,获得积分10
16秒前
王玉丽完成签到,获得积分10
16秒前
徐徐图之发布了新的文献求助10
17秒前
w2503完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645277
求助须知:如何正确求助?哪些是违规求助? 4768340
关于积分的说明 15027650
捐赠科研通 4803859
什么是DOI,文献DOI怎么找? 2568523
邀请新用户注册赠送积分活动 1525813
关于科研通互助平台的介绍 1485484