An Imitation Learning-Enhanced Iterated Matching Algorithm for On-Demand Food Delivery

计算机科学 匹配(统计) 启发式 调度(生产过程) 人工智能 机器学习 数学优化 数学 统计
作者
Jing-fang Chen,Ling Wang,Hao Ren,Jize Pan,Shengyao Wang,Jie Zheng,Xing Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 18603-18619 被引量:24
标识
DOI:10.1109/tits.2022.3163263
摘要

As one representative of the emerging on-demand transport services, the on-demand food delivery (OFD) has penetrated into daily life. Due to its intrinsic complexities, the OFD has attracted the interest of a growing number of logistics researchers. This paper aims at optimizing the OFD process and addresses an OFD problem (OFDP). To overcome the dynamic and large-scale complexity, we abstract the OFDP into a static generalized assignment problem with a rolling horizon strategy. To meet the demand on high service quality and limited computation time, we propose an offline-optimization for online-operation framework based on imitation learning. Under this framework, an imitation learning-enhanced iterated matching algorithm (ILIMA) is proposed, which consists of three basic components: an iterated matching heuristic (IMH) to fast generate solutions, an expert to provide expertise, and a machine learning (ML) model to assist the decision-making process in IMH by mimicking the expert. In the offline-optimization phase, the ML model mines knowledge from the high-quality solutions optimized by the expert; in the online-operation phase, the IMH embedded with the well-trained ML model is deployed online to make decisions in a real OFD scenario. Offline simulation experiments are carried out on real historical data, which validate the superiority of ILIMA compared with existing methods. Moreover, rigorous online A/B tests are conducted on the scheduling system of Meituan, which demonstrates the practical value of ILIMA to improve customer satisfaction and delivery efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Whisper完成签到,获得积分10
1秒前
nanxing完成签到,获得积分20
2秒前
3秒前
3秒前
Kz发布了新的文献求助10
3秒前
若有光完成签到,获得积分10
3秒前
3秒前
5秒前
chemly完成签到 ,获得积分10
5秒前
MY完成签到,获得积分10
6秒前
Orange应助郑雪红采纳,获得10
6秒前
jinduanwu完成签到,获得积分20
6秒前
yuyuyuyu应助若有光采纳,获得10
6秒前
kzr发布了新的文献求助10
8秒前
jinduanwu发布了新的文献求助10
8秒前
tRNA发布了新的文献求助10
9秒前
kuny发布了新的文献求助10
9秒前
兴胜完成签到,获得积分20
9秒前
10秒前
10秒前
quan发布了新的文献求助10
11秒前
帅气冰珍完成签到,获得积分10
12秒前
shapolang发布了新的文献求助10
14秒前
李健的小迷弟应助婉君采纳,获得30
14秒前
16秒前
深情安青应助帅气冰珍采纳,获得10
16秒前
boryant24发布了新的文献求助50
16秒前
16秒前
112233应助surain采纳,获得50
16秒前
18秒前
lani发布了新的文献求助10
19秒前
丘比特应助俊宇采纳,获得10
19秒前
孙一莎发布了新的文献求助10
19秒前
杨咩咩完成签到,获得积分10
19秒前
佳妮发布了新的文献求助10
21秒前
橙子完成签到,获得积分10
22秒前
22秒前
搜集达人应助罗拉采纳,获得10
22秒前
时光漫步123完成签到,获得积分10
22秒前
曼凡发布了新的文献求助10
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Homolytic deamination of amino-alcohols 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3728832
求助须知:如何正确求助?哪些是违规求助? 3273843
关于积分的说明 9983753
捐赠科研通 2989158
什么是DOI,文献DOI怎么找? 1640194
邀请新用户注册赠送积分活动 779103
科研通“疑难数据库(出版商)”最低求助积分说明 747973