An Imitation Learning-Enhanced Iterated Matching Algorithm for On-Demand Food Delivery

计算机科学 匹配(统计) 启发式 调度(生产过程) 人工智能 机器学习 数学优化 数学 统计
作者
Jing-fang Chen,Ling Wang,Hao Ren,Jize Pan,Shengyao Wang,Jing Zheng,Xing Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 18603-18619 被引量:12
标识
DOI:10.1109/tits.2022.3163263
摘要

As one representative of the emerging on-demand transport services, the on-demand food delivery (OFD) has penetrated into daily life. Due to its intrinsic complexities, the OFD has attracted the interest of a growing number of logistics researchers. This paper aims at optimizing the OFD process and addresses an OFD problem (OFDP). To overcome the dynamic and large-scale complexity, we abstract the OFDP into a static generalized assignment problem with a rolling horizon strategy. To meet the demand on high service quality and limited computation time, we propose an offline-optimization for online-operation framework based on imitation learning. Under this framework, an imitation learning-enhanced iterated matching algorithm (ILIMA) is proposed, which consists of three basic components: an iterated matching heuristic (IMH) to fast generate solutions, an expert to provide expertise, and a machine learning (ML) model to assist the decision-making process in IMH by mimicking the expert. In the offline-optimization phase, the ML model mines knowledge from the high-quality solutions optimized by the expert; in the online-operation phase, the IMH embedded with the well-trained ML model is deployed online to make decisions in a real OFD scenario. Offline simulation experiments are carried out on real historical data, which validate the superiority of ILIMA compared with existing methods. Moreover, rigorous online A/B tests are conducted on the scheduling system of Meituan, which demonstrates the practical value of ILIMA to improve customer satisfaction and delivery efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Ray完成签到,获得积分10
3秒前
CipherSage应助这个真不懂采纳,获得10
3秒前
时倾发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
5秒前
科目三应助你好采纳,获得10
5秒前
英俊钢铁侠完成签到,获得积分10
5秒前
6秒前
深情安青应助yangbinsci0827采纳,获得10
6秒前
7秒前
wang发布了新的文献求助10
8秒前
研友_LjVvaL完成签到,获得积分10
9秒前
小马甲应助迅速灵竹采纳,获得10
9秒前
9秒前
刺闰土的瓜瓜完成签到,获得积分20
10秒前
自由过客发布了新的文献求助30
10秒前
PARADOX发布了新的文献求助10
11秒前
mrmaybe发布了新的文献求助10
11秒前
MeiLing完成签到,获得积分10
11秒前
11秒前
12秒前
彩色夜阑完成签到,获得积分10
12秒前
坦率耳机应助彩色的过客采纳,获得10
12秒前
自信筮发布了新的文献求助30
12秒前
魏迎蕾完成签到,获得积分10
14秒前
tian完成签到,获得积分0
15秒前
温婉的慕凝完成签到,获得积分10
16秒前
蓝天发布了新的文献求助10
16秒前
17秒前
17秒前
小鱼爱吃肉应助Hh采纳,获得10
18秒前
毛豆应助冰红茶采纳,获得10
19秒前
寒冷平蓝完成签到,获得积分10
20秒前
W29完成签到,获得积分10
21秒前
22秒前
334niubi666发布了新的文献求助10
22秒前
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308460
求助须知:如何正确求助?哪些是违规求助? 2941800
关于积分的说明 8505840
捐赠科研通 2616702
什么是DOI,文献DOI怎么找? 1429755
科研通“疑难数据库(出版商)”最低求助积分说明 663888
邀请新用户注册赠送积分活动 648967