An Imitation Learning-Enhanced Iterated Matching Algorithm for On-Demand Food Delivery

计算机科学 匹配(统计) 启发式 调度(生产过程) 人工智能 机器学习 数学优化 数学 统计
作者
Jing-fang Chen,Ling Wang,Hao Ren,Jize Pan,Shengyao Wang,Jie Zheng,Xing Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 18603-18619 被引量:27
标识
DOI:10.1109/tits.2022.3163263
摘要

As one representative of the emerging on-demand transport services, the on-demand food delivery (OFD) has penetrated into daily life. Due to its intrinsic complexities, the OFD has attracted the interest of a growing number of logistics researchers. This paper aims at optimizing the OFD process and addresses an OFD problem (OFDP). To overcome the dynamic and large-scale complexity, we abstract the OFDP into a static generalized assignment problem with a rolling horizon strategy. To meet the demand on high service quality and limited computation time, we propose an offline-optimization for online-operation framework based on imitation learning. Under this framework, an imitation learning-enhanced iterated matching algorithm (ILIMA) is proposed, which consists of three basic components: an iterated matching heuristic (IMH) to fast generate solutions, an expert to provide expertise, and a machine learning (ML) model to assist the decision-making process in IMH by mimicking the expert. In the offline-optimization phase, the ML model mines knowledge from the high-quality solutions optimized by the expert; in the online-operation phase, the IMH embedded with the well-trained ML model is deployed online to make decisions in a real OFD scenario. Offline simulation experiments are carried out on real historical data, which validate the superiority of ILIMA compared with existing methods. Moreover, rigorous online A/B tests are conducted on the scheduling system of Meituan, which demonstrates the practical value of ILIMA to improve customer satisfaction and delivery efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Luv_0完成签到,获得积分10
刚刚
科研通AI6应助666采纳,获得10
刚刚
lxq完成签到,获得积分10
1秒前
1秒前
五毛完成签到,获得积分10
1秒前
NexusExplorer应助洁净灵雁采纳,获得10
1秒前
蔺文博完成签到,获得积分10
1秒前
gxch完成签到,获得积分20
1秒前
好多好多鱼完成签到,获得积分10
1秒前
lzcnextdoor发布了新的文献求助10
2秒前
搜集达人应助自然的难摧采纳,获得10
2秒前
研友_VZG7GZ应助han采纳,获得10
3秒前
小黎关注了科研通微信公众号
3秒前
hehsk发布了新的文献求助10
3秒前
主将从现完成签到,获得积分10
3秒前
在水一方应助aaa采纳,获得10
3秒前
Ly完成签到,获得积分10
4秒前
龍焱发布了新的文献求助10
4秒前
qingfeng完成签到,获得积分10
4秒前
虚幻盼晴完成签到,获得积分10
5秒前
yoyoyoyo完成签到,获得积分10
5秒前
望望旺仔牛奶完成签到,获得积分10
5秒前
奇点完成签到 ,获得积分10
6秒前
Lucas应助丫丫采纳,获得10
6秒前
zero完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
hehsk完成签到,获得积分10
8秒前
小龙完成签到,获得积分10
8秒前
李俊凯完成签到 ,获得积分10
8秒前
妖哥完成签到,获得积分10
8秒前
8秒前
9秒前
123发布了新的文献求助10
9秒前
罗是一完成签到,获得积分10
9秒前
9秒前
且听风吟完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615303
求助须知:如何正确求助?哪些是违规求助? 4019099
关于积分的说明 12440991
捐赠科研通 3702052
什么是DOI,文献DOI怎么找? 2041414
邀请新用户注册赠送积分活动 1074129
科研通“疑难数据库(出版商)”最低求助积分说明 957743