An Imitation Learning-Enhanced Iterated Matching Algorithm for On-Demand Food Delivery

计算机科学 匹配(统计) 启发式 调度(生产过程) 人工智能 机器学习 数学优化 数学 统计
作者
Jing-fang Chen,Ling Wang,Hao Ren,Jize Pan,Shengyao Wang,Jie Zheng,Xing Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 18603-18619 被引量:27
标识
DOI:10.1109/tits.2022.3163263
摘要

As one representative of the emerging on-demand transport services, the on-demand food delivery (OFD) has penetrated into daily life. Due to its intrinsic complexities, the OFD has attracted the interest of a growing number of logistics researchers. This paper aims at optimizing the OFD process and addresses an OFD problem (OFDP). To overcome the dynamic and large-scale complexity, we abstract the OFDP into a static generalized assignment problem with a rolling horizon strategy. To meet the demand on high service quality and limited computation time, we propose an offline-optimization for online-operation framework based on imitation learning. Under this framework, an imitation learning-enhanced iterated matching algorithm (ILIMA) is proposed, which consists of three basic components: an iterated matching heuristic (IMH) to fast generate solutions, an expert to provide expertise, and a machine learning (ML) model to assist the decision-making process in IMH by mimicking the expert. In the offline-optimization phase, the ML model mines knowledge from the high-quality solutions optimized by the expert; in the online-operation phase, the IMH embedded with the well-trained ML model is deployed online to make decisions in a real OFD scenario. Offline simulation experiments are carried out on real historical data, which validate the superiority of ILIMA compared with existing methods. Moreover, rigorous online A/B tests are conducted on the scheduling system of Meituan, which demonstrates the practical value of ILIMA to improve customer satisfaction and delivery efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助ResearchTrees采纳,获得10
1秒前
1秒前
1秒前
兔农糖发布了新的文献求助10
2秒前
狂野的汉堡完成签到,获得积分10
2秒前
2秒前
Criminology34应助唐雨文采纳,获得10
3秒前
隐形曼青应助1111111采纳,获得10
3秒前
细心语琴完成签到,获得积分10
3秒前
orixero应助俊俊采纳,获得10
3秒前
yoyo112233发布了新的文献求助10
3秒前
学分发布了新的文献求助10
3秒前
Amir_Sc1完成签到,获得积分10
3秒前
情怀应助王晨旭采纳,获得10
3秒前
DIAPTERA完成签到,获得积分10
4秒前
DX120210165完成签到,获得积分20
4秒前
XY发布了新的文献求助10
4秒前
晨陌兮客完成签到,获得积分10
4秒前
4秒前
小幸运发布了新的文献求助10
5秒前
冬雪发布了新的文献求助10
5秒前
xinxinhu完成签到 ,获得积分10
5秒前
herewego发布了新的文献求助10
5秒前
怕孤单的石头完成签到,获得积分10
6秒前
6秒前
风~应助Yuuki采纳,获得50
6秒前
小园饼干发布了新的文献求助10
6秒前
bilan完成签到,获得积分10
7秒前
7秒前
祝好发布了新的文献求助10
7秒前
7秒前
Karma发布了新的文献求助10
8秒前
Ava应助艾丽采纳,获得10
8秒前
8秒前
俏皮麦片完成签到,获得积分10
9秒前
旷野完成签到,获得积分20
9秒前
9秒前
略略略略略完成签到 ,获得积分10
9秒前
FashionBoy应助修仙中采纳,获得10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5251748
求助须知:如何正确求助?哪些是违规求助? 4415796
关于积分的说明 13747415
捐赠科研通 4287606
什么是DOI,文献DOI怎么找? 2352502
邀请新用户注册赠送积分活动 1349331
关于科研通互助平台的介绍 1308812