An Imitation Learning-Enhanced Iterated Matching Algorithm for On-Demand Food Delivery

计算机科学 匹配(统计) 启发式 调度(生产过程) 人工智能 机器学习 数学优化 数学 统计
作者
Jing-fang Chen,Ling Wang,Hao Ren,Jize Pan,Shengyao Wang,Jie Zheng,Xing Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 18603-18619 被引量:24
标识
DOI:10.1109/tits.2022.3163263
摘要

As one representative of the emerging on-demand transport services, the on-demand food delivery (OFD) has penetrated into daily life. Due to its intrinsic complexities, the OFD has attracted the interest of a growing number of logistics researchers. This paper aims at optimizing the OFD process and addresses an OFD problem (OFDP). To overcome the dynamic and large-scale complexity, we abstract the OFDP into a static generalized assignment problem with a rolling horizon strategy. To meet the demand on high service quality and limited computation time, we propose an offline-optimization for online-operation framework based on imitation learning. Under this framework, an imitation learning-enhanced iterated matching algorithm (ILIMA) is proposed, which consists of three basic components: an iterated matching heuristic (IMH) to fast generate solutions, an expert to provide expertise, and a machine learning (ML) model to assist the decision-making process in IMH by mimicking the expert. In the offline-optimization phase, the ML model mines knowledge from the high-quality solutions optimized by the expert; in the online-operation phase, the IMH embedded with the well-trained ML model is deployed online to make decisions in a real OFD scenario. Offline simulation experiments are carried out on real historical data, which validate the superiority of ILIMA compared with existing methods. Moreover, rigorous online A/B tests are conducted on the scheduling system of Meituan, which demonstrates the practical value of ILIMA to improve customer satisfaction and delivery efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
4秒前
4秒前
4秒前
妩媚的夏旋完成签到,获得积分10
5秒前
Owen应助故意的映波采纳,获得10
7秒前
7秒前
海浪发布了新的文献求助10
7秒前
8秒前
爱吃小鱼饼的西柚完成签到,获得积分10
8秒前
9秒前
好好活着发布了新的文献求助10
9秒前
11秒前
脑洞疼应助cccc采纳,获得10
11秒前
zkyyinf_zero发布了新的文献求助10
12秒前
CHAIZH发布了新的文献求助10
13秒前
crazynail完成签到,获得积分10
13秒前
13秒前
小萝卜莉完成签到,获得积分10
14秒前
cocopepsi完成签到,获得积分10
14秒前
15秒前
今天吃什么呢完成签到,获得积分10
15秒前
16秒前
喽喽发布了新的文献求助10
16秒前
18秒前
18秒前
科研通AI5应助饼藏采纳,获得10
18秒前
过pass发布了新的文献求助10
20秒前
wyp发布了新的文献求助10
21秒前
666应助渊思采纳,获得10
22秒前
22秒前
22秒前
石友瑶发布了新的文献求助10
22秒前
23秒前
24秒前
25秒前
赵云江完成签到,获得积分10
26秒前
没有发布了新的文献求助10
27秒前
纯纯么么哒完成签到,获得积分10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967654
求助须知:如何正确求助?哪些是违规求助? 3512812
关于积分的说明 11165110
捐赠科研通 3247884
什么是DOI,文献DOI怎么找? 1794027
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804528