GPX4
脂多糖
卵清蛋白
免疫学
炎症
活性氧
哮喘
化学
氧化应激
医学
谷胱甘肽过氧化物酶
超氧化物歧化酶
免疫系统
生物化学
作者
Bao Chen,Chao Liu,Qian Liu,Hua Li-Juan,Jiannan Hu,Ziling Li,Shuyun Xu
标识
DOI:10.1016/j.intimp.2022.108770
摘要
Ferroptosis is closely associated with respiratory diseases; however, the relationship between ferroptosis and neutrophilic asthma remains unknown. This study investigated whether Liproxstatin-1 (Lip-1) affects the progression of neutrophilic asthma by inhibiting ferroptosis and inflammatory response, while dissecting the underlying molecular mechanisms.The bronchial epithelial cells (16HBE and BEAS-2B) were administered with lipopolysaccharide (LPS) and interleukin-13 (IL-13) to generate a cell injury model. This cell model was employed to examine the effect of Lip-1 on airway epithelial-associated inflammation and ferroptosis as well as the underlying molecular mechanism. Meanwhile, we evaluated the effects of Lip-1 on neutrophilic asthma and ferroptosis by using the ovalbumin (OVA)/LPS-induced mouse model.Lip-1 reversed the altered expression of ferroptotic regulators (glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11 (SLC7A11) and prostaglandin-endoperoxide synthase 2 (PTGS2)), attenuated lipid reactive oxygen species (lipid ROS) and ameliorated cell viability in HBE and BEAS-2B cells administered with LPS and IL-13. Moreover, Lip-1 treatment led to a marked reduction in the expression of IL-33, TSLP, IL-8, IL-6, and HMGB1 in the HBE and BEAS-2B cells. In the meantime, administration with Lip-1 markedly relieved OVA/LPS-induced neutrophilic asthma, as indicated by significant improvement in lung pathological changes, airway mucus secretion, inflammation, and ferroptosis.This study provides data suggesting that Lip-1 alleviates neutrophilic asthma in vivo and in vitro through inhibiting ferroptosis, perhaps providing a new strategy for neutrophilic asthma treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI