亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AttentionDTA: drug-target binding affinity prediction by sequence-based deep learning with attention mechanism.

人工智能 计算机科学 机制(生物学) 推论 深度学习 机器学习 新颖性 药物开发 特征(语言学) 编码(内存) 亲缘关系 交互信息
作者
Qichang Zhao,Guihua Duan,Mengyun Yang,Zhongjian Cheng,Yaohang Li,Jianxin Wang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tcbb.2022.3170365
摘要

The prediction of drug-target affinities (DTAs) is substantial in drug development. Recently, deep learning has made good progress in the prediction of DTAs. Although relatively effective, due to the black-box nature of deep learning, these models are less biologically interpretable. In this study, we proposed a deep learning-based model, named AttentionDTA, with attention mechanism. The novelty of our work is to use attention mechanism to focus on key subsequences which are important in drug and protein sequences when predicting its affinity. We use two separate one-dimensional Convolution Neural Networks to extract the semantic information of drug's SMILES string and protein's amino acid sequence. Furthermore, four different attention mechanisms are developed and embedded to our model to explore the relationship between drug features and protein features. We conduct extensive experiments to demonstrate that AttentionDTA can effectively extract protein features related to drug information and drug features related to protein information to better predict drug target affinities. By visualizing the attention weight in the model, we found that even if the information of the binding site was never input during the inference process, AttentionDTA can still effectively enhance the role of the protein feature at the target site.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
嘻嘻完成签到,获得积分10
1分钟前
abc完成签到 ,获得积分10
1分钟前
lixuebin完成签到 ,获得积分10
3分钟前
NexusExplorer应助狂奔弟弟采纳,获得10
3分钟前
3分钟前
狂奔弟弟发布了新的文献求助10
3分钟前
狂奔弟弟完成签到,获得积分10
3分钟前
a61完成签到,获得积分10
3分钟前
4分钟前
zsc发布了新的文献求助10
4分钟前
HYQ完成签到 ,获得积分10
4分钟前
MchemG完成签到,获得积分0
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
Ava应助科研通管家采纳,获得10
5分钟前
沐雨微寒完成签到,获得积分10
5分钟前
科研通AI6应助马良采纳,获得10
6分钟前
科研通AI2S应助hairgod采纳,获得10
6分钟前
hairgod完成签到,获得积分10
7分钟前
Jasper应助科研通管家采纳,获得10
7分钟前
8分钟前
马良发布了新的文献求助10
8分钟前
科研通AI5应助马良采纳,获得10
9分钟前
bkagyin应助狂奔弟弟采纳,获得10
9分钟前
9分钟前
9分钟前
狂奔弟弟发布了新的文献求助10
9分钟前
kingcoffee完成签到 ,获得积分10
9分钟前
斯文败类应助平淡的雁桃采纳,获得10
9分钟前
9分钟前
马良发布了新的文献求助10
9分钟前
平淡的雁桃完成签到,获得积分10
10分钟前
10分钟前
10分钟前
科研通AI5应助SarahG采纳,获得30
11分钟前
Owen应助科研通管家采纳,获得10
11分钟前
11分钟前
周同学发布了新的文献求助10
11分钟前
11分钟前
P_Chem完成签到,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582292
求助须知:如何正确求助?哪些是违规求助? 4000077
关于积分的说明 12382091
捐赠科研通 3674945
什么是DOI,文献DOI怎么找? 2025541
邀请新用户注册赠送积分活动 1059261
科研通“疑难数据库(出版商)”最低求助积分说明 945875