AttentionDTA: drug-target binding affinity prediction by sequence-based deep learning with attention mechanism.

人工智能 计算机科学 机制(生物学) 推论 深度学习 机器学习 新颖性 药物开发 特征(语言学) 编码(内存) 亲缘关系 交互信息
作者
Qichang Zhao,Guihua Duan,Mengyun Yang,Zhongjian Cheng,Yaohang Li,Jianxin Wang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tcbb.2022.3170365
摘要

The prediction of drug-target affinities (DTAs) is substantial in drug development. Recently, deep learning has made good progress in the prediction of DTAs. Although relatively effective, due to the black-box nature of deep learning, these models are less biologically interpretable. In this study, we proposed a deep learning-based model, named AttentionDTA, with attention mechanism. The novelty of our work is to use attention mechanism to focus on key subsequences which are important in drug and protein sequences when predicting its affinity. We use two separate one-dimensional Convolution Neural Networks to extract the semantic information of drug's SMILES string and protein's amino acid sequence. Furthermore, four different attention mechanisms are developed and embedded to our model to explore the relationship between drug features and protein features. We conduct extensive experiments to demonstrate that AttentionDTA can effectively extract protein features related to drug information and drug features related to protein information to better predict drug target affinities. By visualizing the attention weight in the model, we found that even if the information of the binding site was never input during the inference process, AttentionDTA can still effectively enhance the role of the protein feature at the target site.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
子非鱼完成签到,获得积分20
3秒前
半生瓜711321完成签到,获得积分10
4秒前
杳杳完成签到,获得积分10
5秒前
小只发布了新的文献求助10
5秒前
6秒前
geye完成签到,获得积分10
7秒前
7秒前
9秒前
aaa完成签到,获得积分20
10秒前
酷波er应助海豚采纳,获得10
11秒前
弥淮发布了新的文献求助10
11秒前
寒冷荧荧应助Hayat采纳,获得10
12秒前
超帅大楚发布了新的文献求助10
12秒前
糊涂的凡松完成签到,获得积分10
12秒前
会飞的鱼完成签到 ,获得积分10
13秒前
16秒前
17秒前
JamesPei应助弥淮采纳,获得10
17秒前
20秒前
21秒前
海绵宝宝发布了新的文献求助10
22秒前
22秒前
24秒前
25秒前
伶俐皮卡丘完成签到,获得积分10
25秒前
26秒前
派大星发布了新的文献求助10
26秒前
超帅大楚完成签到,获得积分10
26秒前
Owen应助彳亍采纳,获得10
27秒前
小张同学读研版完成签到,获得积分10
29秒前
huster发布了新的文献求助10
30秒前
晴栀发布了新的文献求助10
30秒前
30秒前
31秒前
酷波er应助smy采纳,获得10
31秒前
31秒前
领导范儿应助乐观青柏采纳,获得10
31秒前
热情的夏完成签到,获得积分10
33秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
花菁类近红外荧光染料的合成及光学性能研究 500
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161216
求助须知:如何正确求助?哪些是违规求助? 2812648
关于积分的说明 7895876
捐赠科研通 2471484
什么是DOI,文献DOI怎么找? 1316042
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112