AttentionDTA: drug-target binding affinity prediction by sequence-based deep learning with attention mechanism.

人工智能 计算机科学 机制(生物学) 推论 深度学习 机器学习 新颖性 药物开发 特征(语言学) 编码(内存) 亲缘关系 交互信息
作者
Qichang Zhao,Guihua Duan,Mengyun Yang,Zhongjian Cheng,Yaohang Li,Jianxin Wang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tcbb.2022.3170365
摘要

The prediction of drug-target affinities (DTAs) is substantial in drug development. Recently, deep learning has made good progress in the prediction of DTAs. Although relatively effective, due to the black-box nature of deep learning, these models are less biologically interpretable. In this study, we proposed a deep learning-based model, named AttentionDTA, with attention mechanism. The novelty of our work is to use attention mechanism to focus on key subsequences which are important in drug and protein sequences when predicting its affinity. We use two separate one-dimensional Convolution Neural Networks to extract the semantic information of drug's SMILES string and protein's amino acid sequence. Furthermore, four different attention mechanisms are developed and embedded to our model to explore the relationship between drug features and protein features. We conduct extensive experiments to demonstrate that AttentionDTA can effectively extract protein features related to drug information and drug features related to protein information to better predict drug target affinities. By visualizing the attention weight in the model, we found that even if the information of the binding site was never input during the inference process, AttentionDTA can still effectively enhance the role of the protein feature at the target site.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清脆又晴发布了新的文献求助20
1秒前
自然白安发布了新的文献求助10
2秒前
沫沫完成签到 ,获得积分10
2秒前
wulianlian发布了新的文献求助10
3秒前
白宏宝完成签到,获得积分20
4秒前
4秒前
高大美完成签到,获得积分10
4秒前
4秒前
4秒前
yufeiji0626完成签到,获得积分10
4秒前
5秒前
新小pi发布了新的文献求助10
5秒前
yvonnecao完成签到,获得积分10
5秒前
王子语完成签到,获得积分10
6秒前
Jasper应助iMoney采纳,获得10
8秒前
zzzzz完成签到,获得积分10
9秒前
阿南发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
10秒前
奥利安费发布了新的文献求助10
10秒前
11秒前
半夏彗完成签到,获得积分10
11秒前
three发布了新的文献求助10
11秒前
满意机器猫完成签到 ,获得积分10
11秒前
11秒前
qz完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
tianmj发布了新的文献求助10
13秒前
hhh关注了科研通微信公众号
13秒前
葛二蛋完成签到,获得积分10
14秒前
领导范儿应助张伟静采纳,获得10
15秒前
15秒前
合适台灯发布了新的文献求助10
16秒前
猪幺妖完成签到 ,获得积分10
16秒前
16秒前
bling发布了新的文献求助10
18秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961767
求助须知:如何正确求助?哪些是违规求助? 3508099
关于积分的说明 11139632
捐赠科研通 3240798
什么是DOI,文献DOI怎么找? 1791052
邀请新用户注册赠送积分活动 872720
科研通“疑难数据库(出版商)”最低求助积分说明 803344