Artificial intelligence methods for improving the inventive design process, application in lattice structure case study

特里兹 计算机科学 过程(计算) 领域(数学) 人工智能 图形 人工神经网络 工业工程 机器学习 理论计算机科学 工程类 数学 操作系统 纯数学
作者
Masih Hanifi,Hicham Chibane,Rémy Houssin,Denis Cavallucci,Naser Ghannad
出处
期刊:Artificial intelligence for engineering design, analysis and manufacturing [Cambridge University Press]
卷期号:36 被引量:5
标识
DOI:10.1017/s0890060422000051
摘要

Abstract Nowadays, firms are constantly looking for methodological approaches that help them to decrease the time needed for the innovation process. Among these approaches, it is worth mentioning the TRIZ-based frameworks such as the Inventive Design Methodology (IDM), where the Problem Graph method is used to formulate a problem. However, the application of IDM is time-consuming due to the construction of a complete map to clarify a problem situation. Therefore, the Inverse Problem Graph (IPG) method has been introduced within the IDM framework to enhance its agility. Nevertheless, the manual gathering of essential information, including parameters and concepts, requires effort and time. This paper integrates the neural network doc2vec and machine learning algorithms as Artificial Intelligence methods into a graphical method inspired by the IPG process. This integration can facilitate and accelerate the development of inventive solutions by extracting parameters and concepts in the inventive design process. The method has been applied to develop a new lattice structure solution in the material field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助jam采纳,获得10
刚刚
刚刚
眼睛大谷蕊完成签到 ,获得积分10
1秒前
2秒前
凶狠的冬天关注了科研通微信公众号
3秒前
4秒前
5秒前
LEO发布了新的文献求助10
6秒前
CUREME完成签到,获得积分10
6秒前
笑笑丶不爱笑完成签到,获得积分10
6秒前
CodeCraft应助zhang005on采纳,获得10
7秒前
Ava应助龇牙鲨鱼采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得30
8秒前
思源应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
pluto应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
8秒前
ACOY应助科研通管家采纳,获得20
8秒前
pluto应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
Singularity应助科研通管家采纳,获得10
9秒前
浅尝离白应助科研通管家采纳,获得30
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
伶俐从筠应助科研通管家采纳,获得10
9秒前
Billy应助科研通管家采纳,获得20
9秒前
9秒前
9秒前
9秒前
漂亮幻莲发布了新的文献求助10
10秒前
12秒前
12秒前
12秒前
万勇发布了新的文献求助10
14秒前
14秒前
asd发布了新的文献求助10
14秒前
可乐加冰完成签到,获得积分10
14秒前
LX77bx完成签到,获得积分10
15秒前
LEO完成签到,获得积分10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312036
求助须知:如何正确求助?哪些是违规求助? 2944707
关于积分的说明 8521005
捐赠科研通 2620360
什么是DOI,文献DOI怎么找? 1432797
科研通“疑难数据库(出版商)”最低求助积分说明 664762
邀请新用户注册赠送积分活动 650092