Time Series Prediction Method of Industrial Process With Limited Data Based on Transfer Learning

时间序列 工业生产 计算机科学 过程(计算) 学习迁移 机器学习 系列(地层学) 数据挖掘 生产(经济) 数据建模 人工智能 宏观经济学 操作系统 生物 古生物学 经济 凯恩斯经济学 数据库
作者
Xiaofeng Zhou,Naiju Zhai,Shuai Li,Haibo Shi
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (5): 6872-6882 被引量:14
标识
DOI:10.1109/tii.2022.3191980
摘要

Industrial time series, as a kind of data that responds to production process information, can be analyzed and predicted for effective monitoring of industrial production processes. There are problems of data shortage and algorithm cold start in industrial modeling process caused by complex working conditions, change of data acquisition environment, and short running time of equipment. As a result, the accuracy of the existing data-driven industrial time series prediction algorithm is greatly limited. To address the aforementioned problems, we propose a new time series prediction method for industrial processes under limited data based on dynamic transfer learning in this work. This method aims to effectively use historical data of similar equipment or working conditions rather than discard them to help establish an industrial time series prediction model with limited target data. In this method, first, historical data are divided into multiple batches, and then a new multisource transfer learning framework with dynamic maximum mean difference loss is established according to the distribution distance between each batch of historical data and the limited target data at the current moment. The framework also combines multitask learning methods to establish multistep prediction model for online learning in industrial processes. Compared with other commonly used methods, experiments on two real-world datasets of solar power generation prediction and heating furnace temperature prediction demonstrate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助一只晴天采纳,获得10
3秒前
慕青应助爱科研的TOM采纳,获得10
3秒前
彭于晏应助Fox采纳,获得10
6秒前
6秒前
小王的科研小助手完成签到 ,获得积分10
6秒前
车车完成签到,获得积分20
8秒前
Sunny完成签到,获得积分10
9秒前
10秒前
传奇3应助aaaaaa采纳,获得10
10秒前
Owen应助hugeng采纳,获得10
11秒前
flugel发布了新的文献求助10
11秒前
车车发布了新的文献求助30
12秒前
15秒前
15秒前
彩彩发布了新的文献求助10
16秒前
17秒前
深情安青应助Kristin采纳,获得10
17秒前
研究僧完成签到,获得积分10
18秒前
机智翼完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
aaaaaa完成签到,获得积分10
20秒前
21秒前
hugeng完成签到,获得积分10
23秒前
23秒前
23秒前
在水一方应助女神金采纳,获得10
23秒前
hugeng发布了新的文献求助10
25秒前
26秒前
HY兑完成签到,获得积分10
26秒前
Maosha发布了新的文献求助10
27秒前
小蘑菇应助五点半晨跑采纳,获得10
28秒前
28秒前
茶博士完成签到,获得积分10
29秒前
田様应助樊香彤采纳,获得10
29秒前
风息发布了新的文献求助10
30秒前
wsy完成签到,获得积分10
31秒前
丘比特应助Guoqiang采纳,获得10
32秒前
自由的傲儿完成签到 ,获得积分10
33秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163348
求助须知:如何正确求助?哪些是违规求助? 2814206
关于积分的说明 7903775
捐赠科研通 2473774
什么是DOI,文献DOI怎么找? 1317050
科研通“疑难数据库(出版商)”最低求助积分说明 631614
版权声明 602187