Time Series Prediction Method of Industrial Process With Limited Data Based on Transfer Learning

时间序列 工业生产 计算机科学 过程(计算) 学习迁移 机器学习 系列(地层学) 数据挖掘 生产(经济) 数据建模 人工智能 数据库 古生物学 宏观经济学 凯恩斯经济学 经济 生物 操作系统
作者
Xiaofeng Zhou,Naiju Zhai,Shuai Li,Haibo Shi
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (5): 6872-6882 被引量:26
标识
DOI:10.1109/tii.2022.3191980
摘要

Industrial time series, as a kind of data that responds to production process information, can be analyzed and predicted for effective monitoring of industrial production processes. There are problems of data shortage and algorithm cold start in industrial modeling process caused by complex working conditions, change of data acquisition environment, and short running time of equipment. As a result, the accuracy of the existing data-driven industrial time series prediction algorithm is greatly limited. To address the aforementioned problems, we propose a new time series prediction method for industrial processes under limited data based on dynamic transfer learning in this work. This method aims to effectively use historical data of similar equipment or working conditions rather than discard them to help establish an industrial time series prediction model with limited target data. In this method, first, historical data are divided into multiple batches, and then a new multisource transfer learning framework with dynamic maximum mean difference loss is established according to the distribution distance between each batch of historical data and the limited target data at the current moment. The framework also combines multitask learning methods to establish multistep prediction model for online learning in industrial processes. Compared with other commonly used methods, experiments on two real-world datasets of solar power generation prediction and heating furnace temperature prediction demonstrate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
月关发布了新的文献求助10
1秒前
1秒前
斯文败类应助sam1514采纳,获得10
1秒前
酷波er应助刘智山采纳,获得10
2秒前
2秒前
Jacklzu完成签到,获得积分10
2秒前
wrwywzx完成签到,获得积分10
3秒前
小叶大王完成签到,获得积分20
3秒前
4秒前
4秒前
5秒前
Joleneli100完成签到,获得积分10
5秒前
bao驳回了无花果应助
5秒前
5秒前
星辰大海应助渊_采纳,获得10
5秒前
思绪完成签到 ,获得积分10
6秒前
YEHEI完成签到 ,获得积分10
6秒前
李健应助Na2CO3采纳,获得10
6秒前
vesta完成签到,获得积分10
6秒前
6秒前
7秒前
GG发布了新的文献求助10
7秒前
OKOK发布了新的文献求助10
7秒前
汉堡一号完成签到,获得积分10
7秒前
7秒前
7秒前
Patrick完成签到,获得积分20
7秒前
7秒前
026发布了新的文献求助10
7秒前
richestchen完成签到,获得积分10
7秒前
8秒前
LSY发布了新的文献求助10
8秒前
junjie发布了新的文献求助10
8秒前
与秋逐鹿发布了新的文献求助10
9秒前
科研通AI6应助邓谷云采纳,获得10
9秒前
9秒前
风云完成签到,获得积分10
9秒前
所所应助harden采纳,获得10
9秒前
研友_VZG7GZ应助禾几采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071804
求助须知:如何正确求助?哪些是违规求助? 4292378
关于积分的说明 13374385
捐赠科研通 4113281
什么是DOI,文献DOI怎么找? 2252316
邀请新用户注册赠送积分活动 1257279
关于科研通互助平台的介绍 1190064