Extracellular vesicle-based biomarker assay for the detection of early-stage ovarian cancer.

医学 卵巢癌 生物标志物 阶段(地层学) 癌症 浆液性液体 胞外囊泡 内科学 肿瘤科 队列 癌症研究 胃肠病学 微泡 小RNA 生物 古生物学 生物化学 基因
作者
Laura Bortolin,Daniel P. Salem,Jonian Grosha,Ibukunoluwapo O. Zabroski,Sanchari Banerjee,Daniel Gusenleitner,Kelly M. Biette,Christopher R. Sedlak,Anthony D. Couvillon,Peter A. Duff,Delaney M. Byrne,MacKenzie Sadie King,Amy Jamieson,Emily S. Winn-Deen,Jessica N. McAlpine,David Huntsman,Steven J. Skates,Eric K. Huang,Joseph Charles Sedlak
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:40 (16_suppl): 5542-5542 被引量:1
标识
DOI:10.1200/jco.2022.40.16_suppl.5542
摘要

5542 Background: Detection of cancer with improved discrimination compared to current blood tests could be achieved using an approach that assesses extracellular vesicles (EVs). This approach should have high sensitivity (se) because of EVs abundance in blood and high specificity (sp) by assaying EVs with multiple cancer-related protein and glycosylation epitopes (PGEs) co-localized on their surfaces. We are developing a platform technology that detects multiple cancer-related PGEs co-localized on the same EV using immunoaffinity-capture and proximity-ligation qPCR. In this study, we compare the performance of this technology vs plasma CA125 for correctly categorizing early-stage high-grade serous ovarian cancer (HGSOC) vs healthy/benign ovarian tumors (OT). Methods: We evaluated our EV-based platform technology using 7 PGE combinations to discriminate HGSOC from benign adnexal masses. We first derived a prediction model on a retrospectively collected cohort of 42 HGSOC and 26 benign OT samples from 2 commercial vendors and 24 healthy controls (HC) using a machine-learning algorithm. We validated this model on an independent cohort [89 HGSOC: Stage I (17), II (35), III (37); 192 benign OT] from university-associated biobanks and 124 HC. We also assessed the assay’s performance in plasma from 87 women with off-target cancers and 42 women with inflammatory conditions from commercial vendors. For each sample, we also measured CA125 levels using a commercial ELISA. Results: The prediction model distinguishes HGSOC from benign and HC with an AUC of 0.965 (95% CI 0.93-0.99), with 89.9% (0.82-0.95) se at 98% sp. For stage I/II HGSOC, the model achieves an AUC of 0.942 (0.9-0.99), with 84.6% (0.72-0.93) se at 98% sp. By comparison, CA125 achieves an AUC of 0.875 (0.81-0.94) and 44.2% (0.3-0.59) se at 98% sp. Direct comparison of CA125 and our model shows a significant difference at 98% sp for both all and stage I/II HGSOC (McNemar p-val < 0.001). When comparing HGSOC to HC, there is no significant difference between our model and CA125 (p-val = 1.0). There is a significant difference when comparing patients with all stage and stage I/II HGSOC to patients with benign OT (p-val < 0.001). Our assay had 1 false positive and CA125 had 3 false positives out of 42 inflammatory cases. Conclusions: These preliminary data suggest our platform technology for detecting PGEs co-localized on individual EVs may detect all stages of HGSOC from plasma with high se at a very high sp. Our assay may improve on CA125 by distinguishing stage I/II HGSOC from benign OT and could have clinical utility for both early detection and surgical referral recommendation for benign and malignant OT. While the diverse cohorts in this study may present challenges in interpretation, the reproducibility in an independent cohort is encouraging and supports further investigation using cases and controls from well-defined cohort studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老肖应助林盒采纳,获得10
3秒前
研究生完成签到 ,获得积分10
5秒前
风中的青完成签到,获得积分10
7秒前
老肖应助鲜于灵竹采纳,获得30
8秒前
大气的莆完成签到,获得积分10
8秒前
Ava应助zengyiyong采纳,获得10
9秒前
10秒前
11秒前
小羊发布了新的文献求助10
13秒前
CC2333完成签到,获得积分10
13秒前
14秒前
科研通AI2S应助寒冷代真采纳,获得10
15秒前
我要吃挂面完成签到,获得积分10
17秒前
金泽林发布了新的文献求助30
17秒前
17秒前
17秒前
顾矜应助abbsdan采纳,获得10
19秒前
爆米花应助YYJ采纳,获得10
20秒前
20秒前
方远锋完成签到,获得积分10
22秒前
晚枫发布了新的文献求助10
22秒前
22秒前
不配.应助UTAU采纳,获得10
23秒前
23秒前
25秒前
MMao发布了新的文献求助10
25秒前
金泽林完成签到,获得积分20
26秒前
26秒前
Singularity应助ethereal采纳,获得10
28秒前
平常的伊完成签到,获得积分20
29秒前
zengyiyong发布了新的文献求助10
31秒前
152364789发布了新的文献求助10
31秒前
爱听歌寄云完成签到 ,获得积分10
34秒前
WW应助晚枫采纳,获得10
34秒前
MMao完成签到,获得积分10
35秒前
35秒前
LI完成签到 ,获得积分10
36秒前
田様应助wad采纳,获得10
41秒前
KK发布了新的文献求助10
42秒前
寒冷代真给寒冷代真的求助进行了留言
43秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136744
求助须知:如何正确求助?哪些是违规求助? 2787779
关于积分的说明 7783154
捐赠科研通 2443843
什么是DOI,文献DOI怎么找? 1299466
科研通“疑难数据库(出版商)”最低求助积分说明 625457
版权声明 600954