控制理论(社会学)
跟踪误差
自抗扰控制
微分器
人工神经网络
控制器(灌溉)
工程类
车辆动力学
主动转向
航向(导航)
计算机科学
国家观察员
粒子群优化
跟踪(教育)
控制工程
非线性系统
人工智能
控制(管理)
计算机视觉
算法
心理学
教育学
物理
滤波器(信号处理)
量子力学
航空航天工程
汽车工程
农学
生物
作者
Gang Chen,Yichen Jiang,Keyi Guo
标识
DOI:10.1109/mits.2022.3174696
摘要
In this article, a neural active disturbance rejection adaptive lateral manipulation control method for an unmanned driving robot (UDR) is proposed to realize accurate and stable steering and path tracking. Combined with a model of the manipulated vehicle and steering manipulator, an integrated dynamics model of the vehicle manipulated by a UDR is established. Taking the error of the body heading angle and the lateral error of the vehicle as input, an active disturbance rejection controller is designed; it includes a tracking differentiator, nonlinear state error feedback (NLSEF) device, and an extended state observer. To achieve a better performance, the combination mode of the NLSEF is adjusted adaptively by a radial basis function NN. The network is then initialized by a particle swarm optimization algorithm. Finally, the results of simulations and experiments show that the proposed method effectively improves the performance of stable steering and path tracking of the UDR.
科研通智能强力驱动
Strongly Powered by AbleSci AI