(Invited, Digital Presentation) Nanostructured Thin Film (NSTF) Iridium Catalyst Powder for Proton Exchange Membrane Water Electrolyzers

材料科学 质子交换膜燃料电池 催化作用 化学工程 分解水 制氢 化学 有机化学 光催化 工程类
作者
Andrew J. Steinbach,Andrew T. Haug,Fuxia Sun,Krzysztof A. Lewinski,Hui Xu,Natalia Macauley,Shuo Ding,Elliot Padgett,Shaun M Alia,David A. Cullen
出处
期刊:Meeting abstracts 卷期号:MA2022-01 (33): 1340-1340
标识
DOI:10.1149/ma2022-01331340mtgabs
摘要

Proton exchange membrane water electrolyzers (PEMWEs) are electrochemical devices which generate hydrogen (H 2 ) gas from water and electrical energy feedstocks. PEMWEs produce H 2 renewably and carbon-free when the electricity is from renewable sources, and are a pathway to enable deep decarbonization across multiple industrial and energy sectors[1]. However, commercial deployment of PEMWEs is currently limited to megawatt-scale due to relatively higher H 2 production costs and capital costs than hydrocarbon reforming [2]. The higher costs are due in part to the use of significant quantities of expensive materials (Pt and Ir electrocatalysts and perfluorinated ionomers), insufficient operating performance and durability, and high manufacturing costs. Additionally, commercial PEMWEs additionally use high Ir loadings [3] for the oxygen evolution reaction (OER), and the limited abundance of Ir [4] may limit PEMWE annual deployment of those technologies to gigawatt (GW) scale. 3M Nanostructured Thin Film (NSTF) PEMWE OER powder catalysts and electrodes are a unique approach to address the cost and Ir utilization barriers noted above. NSTF catalysts [5] are comprised of nm-scale catalyst metal thin films on a high aspect ratio inert support (Fig. A). NSTF Ir OER catalysts enable high efficiency and high durability due to high OER mass activity and intrinsic resistance to dissolution, imparted by the unique agglomerated thin film catalyst structure. NSTF OER electrodes [6] consist of a dispersed matrix of NSTF catalyst powder particles within a perfluorosulfonic acid (PFSA) ionomer binder (Fig. B), which have high catalyst utilization due to the high electronic conductivity of the primary catalyst particles. One of the key challenges associated with development of OER catalysts and electrodes is the lack of qualified accelerated stress tests (ASTs) to enable rapid assessments of durability under conditions relevant for end-use. The challenge is in part magnified by the long lifetime requirements of 80,000 hours and low required decay rates of single microvolts per hour, which traditionally has required long testing times and multiple replicates to obtain needed statistical significance. Additionally, evaluations of durability have often occurred under steady state testing with fixed current densities, which do not reflect anticipated use profiles when integrated with renewables such as wind and solar with significant power production variability over time. Lastly, operation at increased stack power densities is considered a key strategy to reduce stack capital costs and Ir requirements on a gram per kW basis. In this paper, we will report recent work on our durability assessment of NSTF OER powder catalysts and electrodes under aggressive testing protocols with low catalyst loadings relevant for PEM electrolyzers at large scale. Assessments included steady state durability tests, an accelerated stress test, and a protocol intended to simulate integration with a wind variable renewable energy (VRE) load profile. An example of results from the wind VRE protocol are summarized in Figs. C and D. The wind VRE protocol generated by Alia et al. [7] was modified from voltage control to current control and the maximum current density was scaled to 4.5A/cm 2 . The protocol was applied to a 3M laboratory CCM comprising a 0.20 mg/cm 2 of 78wt% Ir/NSTF powder catalyst OER electrode, 0.09 mg/cm 2 of 78wt% Pt/NSTF powder hydrogen evolution reaction (HER) electrode, and a 100 micron thick PEM (800EW 3M PFSA). After 500 hours of the wind VRE protocol, the cell performance was essentially unchanged (1mV voltage decrease at 2A/cm 2 ). S. Dept. of Energy “H2@Scale”, https://www.energy.gov/eere/fuelcells/h2scale . S. Dept. of Energy H2USA Model, Current Forecourt Hydrogen Production v. 3.101. Ayers et al., Catalysis Today 262 121-132 (2016). Babic et al., Electrochem. Soc. 164 F387 (2017). Debe et al., ECS Trans. 45 (2) 47-68 (2012). Steinbach et al., 2019 U.S. DOE Annual Merit Review, Project ta026. Alia et al., Electrochem. Soc. 166 F1164 (2019). Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Yunis发布了新的文献求助30
1秒前
张小鱼发布了新的文献求助10
1秒前
1秒前
平常水卉发布了新的文献求助10
2秒前
烟花应助自然寒烟采纳,获得10
2秒前
柠檬水发布了新的文献求助10
3秒前
拉长的凌旋完成签到 ,获得积分10
3秒前
3秒前
桐桐应助机智初夏采纳,获得10
3秒前
车车完成签到,获得积分10
5秒前
6秒前
6秒前
ccrr发布了新的文献求助10
6秒前
竹坞听荷发布了新的文献求助10
7秒前
听蝉发布了新的文献求助10
7秒前
深情安青应助Wri采纳,获得10
7秒前
7秒前
克林沙星完成签到,获得积分10
8秒前
8秒前
wangsy完成签到,获得积分10
8秒前
8秒前
正直敏应助喝喂辉采纳,获得10
9秒前
爆米花应助柠檬水采纳,获得10
9秒前
9秒前
9秒前
ll完成签到,获得积分10
11秒前
淋漓尽致完成签到,获得积分10
11秒前
chun发布了新的文献求助10
11秒前
雪白的冰真完成签到,获得积分10
12秒前
yiyi发布了新的文献求助10
12秒前
12秒前
默默的依凝完成签到,获得积分10
13秒前
panjunlu发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
omitoo完成签到 ,获得积分10
17秒前
17秒前
18秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756148
求助须知:如何正确求助?哪些是违规求助? 3299357
关于积分的说明 10109848
捐赠科研通 3013911
什么是DOI,文献DOI怎么找? 1655353
邀请新用户注册赠送积分活动 789722
科研通“疑难数据库(出版商)”最低求助积分说明 753415