Automated Detection of Major Depressive Disorder With EEG Signals: A Time Series Classification Using Deep Learning

脑电图 重性抑郁障碍 计算机科学 人工智能 频道(广播) 选择(遗传算法) 模式识别(心理学) 特征选择 深度学习 机器学习 心理学 精神科 认知 计算机网络
作者
Alireza Rafiei,Rasoul Zahedifar,Chiranjibi Sitaula,Faezeh Marzbanrad
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 73804-73817 被引量:32
标识
DOI:10.1109/access.2022.3190502
摘要

Major depressive disorder (MDD) has been considered a severe and common ailment with effects on functional frailty, while its clear manifestations are shrouded in mystery. Hence, manual detection of MDD is a challenging and subjective task. Although Electroencephalogram (EEG) signals have shown promise in aiding diagnosis, further enhancement is required to improve accuracy, clinical utility, and efficiency. This study focuses on the automated detection of MDD using EEG data and deep neural network architecture. For this aim, first, a customized InceptionTime model is recruited to detect MDD individuals via 19-channel raw EEG signals. Then a channel-selection strategy, which comprises three channel-selection steps, is conducted to omit redundant channels. The proposed method achieved 91.67% accuracy using the full set of channels and 87.5% after channel reduction. Our analysis shows that i) only the first minute of EEG recording is sufficient for MDD detection, ii) models based on EEG recorded in eyes-closed resting-state outperform eyes-open conditions, and iii) customizing the InceptionTime model can improve its efficiency for different assignments. The proposed method is able to help clinicians as an efficient, straightforward, and intelligent diagnostic tool for the objective detection of MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
烟花应助科研通管家采纳,获得10
刚刚
SYLH应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
SYLH应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
lili完成签到,获得积分10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
1秒前
清脆安南完成签到 ,获得积分10
1秒前
小蘑菇应助卡图兰采纳,获得10
2秒前
3秒前
迟大猫应助小鸭子采纳,获得10
3秒前
helix发布了新的文献求助10
3秒前
5秒前
5秒前
6秒前
6秒前
欣喜的伟泽完成签到,获得积分10
6秒前
孟寐以求发布了新的文献求助10
6秒前
李健应助hibiwi采纳,获得20
6秒前
7秒前
yanmiu1完成签到,获得积分10
7秒前
7秒前
8秒前
机智谷蕊完成签到,获得积分10
8秒前
8秒前
红莲墨生发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561336
求助须知:如何正确求助?哪些是违规求助? 3134989
关于积分的说明 9410720
捐赠科研通 2835413
什么是DOI,文献DOI怎么找? 1558442
邀请新用户注册赠送积分活动 728219
科研通“疑难数据库(出版商)”最低求助积分说明 716729