Continuous Conditional Generative Adversarial Networks: Novel Empirical Losses and Label Input Mechanisms

鉴别器 计算机科学 发电机(电路理论) 回归 范畴变量 水准点(测量) 人工智能 标量(数学) 模式识别(心理学) 算法 机器学习 数学 统计 功率(物理) 电信 物理 几何学 大地测量学 量子力学 探测器 地理
作者
Xin Ding,Yongwei Wang,Zuheng Xu,William J. Welch,Z. Jane Wang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (7): 8143-8158 被引量:8
标识
DOI:10.1109/tpami.2022.3228915
摘要

This article focuses on conditional generative modeling (CGM) for image data with continuous, scalar conditions (termed regression labels). We propose the first model for this task which is called continuous conditional generative adversarial network (CcGAN). Existing conditional GANs (cGANs) are mainly designed for categorical conditions (e.g., class labels). Conditioning on regression labels is mathematically distinct and raises two fundamental problems: (P1) since there may be very few (even zero) real images for some regression labels, minimizing existing empirical versions of cGAN losses (a.k.a. empirical cGAN losses) often fails in practice; and (P2) since regression labels are scalar and infinitely many, conventional label input mechanisms (e.g., combining a hidden map of the generator/discriminator with a one-hot encoded label) are not applicable. We solve these problems by: (S1) reformulating existing empirical cGAN losses to be appropriate for the continuous scenario; and (S2) proposing a naive label input (NLI) mechanism and an improved label input (ILI) mechanism to incorporate regression labels into the generator and the discriminator. The reformulation in (S1) leads to two novel empirical discriminator losses, termed the hard vicinal discriminator loss (HVDL) and the soft vicinal discriminator loss (SVDL) respectively, and a novel empirical generator loss. Hence, we propose four versions of CcGAN employing different proposed losses and label input mechanisms. The error bounds of the discriminator trained with HVDL and SVDL, respectively, are derived under mild assumptions. To evaluate the performance of CcGANs, two new benchmark datasets (RC-49 and Cell-200) are created. A novel evaluation metric ( Sliding Fréchet Inception Distance ) is also proposed to replace Intra-FID when Intra-FID is not applicable. Our extensive experiments on several benchmark datasets (i.e., RC-49, UTKFace, Cell-200, and Steering Angle with both low and high resolutions) support the following findings: the proposed CcGAN is able to generate diverse, high-quality samples from the image distribution conditional on a given regression label; and CcGAN substantially outperforms cGAN both visually and quantitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
小马甲应助小袁采纳,获得10
2秒前
桐桐应助贤惠的蓝天采纳,获得10
2秒前
生言生语发布了新的文献求助10
3秒前
xxx完成签到,获得积分10
4秒前
陈曦发布了新的文献求助10
4秒前
hz完成签到,获得积分10
4秒前
我是站长才怪应助zhen9203采纳,获得20
4秒前
mahliya发布了新的文献求助10
5秒前
飘逸尔曼完成签到,获得积分10
5秒前
6秒前
科目三应助伶俐的书白采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
7秒前
7秒前
今后应助科研通管家采纳,获得30
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
7秒前
orixero应助学霸宇大王采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
发条橙完成签到,获得积分10
8秒前
8秒前
ZHANES发布了新的文献求助10
8秒前
8秒前
懵懂的寻冬完成签到,获得积分10
8秒前
Lee发布了新的文献求助20
9秒前
坦率抽屉完成签到 ,获得积分10
9秒前
Dimples发布了新的文献求助10
10秒前
10秒前
fjiang2003发布了新的文献求助10
10秒前
11秒前
ZZZ发布了新的文献求助10
11秒前
lyj_eye发布了新的文献求助10
11秒前
vanco完成签到 ,获得积分10
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978415
求助须知:如何正确求助?哪些是违规求助? 3522416
关于积分的说明 11213317
捐赠科研通 3259798
什么是DOI,文献DOI怎么找? 1799678
邀请新用户注册赠送积分活动 878563
科研通“疑难数据库(出版商)”最低求助积分说明 806987