Continuous Conditional Generative Adversarial Networks: Novel Empirical Losses and Label Input Mechanisms

鉴别器 计算机科学 发电机(电路理论) 回归 范畴变量 水准点(测量) 人工智能 标量(数学) 模式识别(心理学) 算法 机器学习 数学 统计 功率(物理) 电信 物理 几何学 大地测量学 量子力学 探测器 地理
作者
Xin Ding,Yongwei Wang,Zuheng Xu,William J. Welch,Z. Jane Wang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (7): 8143-8158 被引量:8
标识
DOI:10.1109/tpami.2022.3228915
摘要

This article focuses on conditional generative modeling (CGM) for image data with continuous, scalar conditions (termed regression labels). We propose the first model for this task which is called continuous conditional generative adversarial network (CcGAN). Existing conditional GANs (cGANs) are mainly designed for categorical conditions (e.g., class labels). Conditioning on regression labels is mathematically distinct and raises two fundamental problems: (P1) since there may be very few (even zero) real images for some regression labels, minimizing existing empirical versions of cGAN losses (a.k.a. empirical cGAN losses) often fails in practice; and (P2) since regression labels are scalar and infinitely many, conventional label input mechanisms (e.g., combining a hidden map of the generator/discriminator with a one-hot encoded label) are not applicable. We solve these problems by: (S1) reformulating existing empirical cGAN losses to be appropriate for the continuous scenario; and (S2) proposing a naive label input (NLI) mechanism and an improved label input (ILI) mechanism to incorporate regression labels into the generator and the discriminator. The reformulation in (S1) leads to two novel empirical discriminator losses, termed the hard vicinal discriminator loss (HVDL) and the soft vicinal discriminator loss (SVDL) respectively, and a novel empirical generator loss. Hence, we propose four versions of CcGAN employing different proposed losses and label input mechanisms. The error bounds of the discriminator trained with HVDL and SVDL, respectively, are derived under mild assumptions. To evaluate the performance of CcGANs, two new benchmark datasets (RC-49 and Cell-200) are created. A novel evaluation metric ( Sliding Fréchet Inception Distance ) is also proposed to replace Intra-FID when Intra-FID is not applicable. Our extensive experiments on several benchmark datasets (i.e., RC-49, UTKFace, Cell-200, and Steering Angle with both low and high resolutions) support the following findings: the proposed CcGAN is able to generate diverse, high-quality samples from the image distribution conditional on a given regression label; and CcGAN substantially outperforms cGAN both visually and quantitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
aslink完成签到,获得积分10
1秒前
Amon完成签到,获得积分10
1秒前
啊娴仔发布了新的文献求助10
1秒前
camellia发布了新的文献求助10
1秒前
万能图书馆应助狂野觅云采纳,获得10
1秒前
充电宝应助zino采纳,获得10
2秒前
2秒前
小可发布了新的文献求助10
2秒前
英姑应助酷酷的起眸采纳,获得10
3秒前
Blue_Pig发布了新的文献求助10
3秒前
科研小白完成签到,获得积分10
4秒前
sooya发布了新的文献求助20
5秒前
5秒前
tiddler完成签到,获得积分10
5秒前
科研通AI2S应助滴滴采纳,获得10
5秒前
wgx完成签到,获得积分20
5秒前
6秒前
爱静静应助Keep采纳,获得10
6秒前
6秒前
6秒前
小马甲应助韭菜采纳,获得10
7秒前
MADKAI发布了新的文献求助10
7秒前
机智的白猫完成签到,获得积分10
7秒前
李健的小迷弟应助xxx采纳,获得10
7秒前
杜杜完成签到,获得积分10
7秒前
NexusExplorer应助新的心跳采纳,获得10
8秒前
9秒前
9秒前
9秒前
9秒前
9秒前
JamesPei应助小可采纳,获得10
9秒前
粗暴的醉卉完成签到,获得积分10
9秒前
9秒前
科研通AI5应助stt采纳,获得10
10秒前
sunzhiyu233发布了新的文献求助10
11秒前
11秒前
缓缓地安静关注了科研通微信公众号
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759