Pose-Guided Feature Disentangling for Occluded Person Re-identification Based on Transformer

计算机科学 变压器 人工智能 计算机视觉 图形 匹配(统计) 模式识别(心理学) 姿势 特征匹配 特征提取 理论计算机科学 工程类 电压 数学 统计 电气工程
作者
Tao Wang,Hong Liu,Pinhao Song,Tianyu Guo,Wei Shi
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:36 (3): 2540-2549 被引量:107
标识
DOI:10.1609/aaai.v36i3.20155
摘要

Occluded person re-identification is a challenging task as human body parts could be occluded by some obstacles (e.g. trees, cars, and pedestrians) in certain scenes. Some existing pose-guided methods solve this problem by aligning body parts according to graph matching, but these graph-based methods are not intuitive and complicated. Therefore, we propose a transformer-based Pose-guided Feature Disentangling (PFD) method by utilizing pose information to clearly disentangle semantic components (e.g. human body or joint parts) and selectively match non-occluded parts correspondingly. First, Vision Transformer (ViT) is used to extract the patch features with its strong capability. Second, to preliminarily disentangle the pose information from patch information, the matching and distributing mechanism is leveraged in Pose-guided Feature Aggregation (PFA) module. Third, a set of learnable semantic views are introduced in transformer decoder to implicitly enhance the disentangled body part features. However, those semantic views are not guaranteed to be related to the body without additional supervision. Therefore, Pose-View Matching (PVM) module is proposed to explicitly match visible body parts and automatically separate occlusion features. Fourth, to better prevent the interference of occlusions, we design a Pose-guided Push Loss to emphasize the features of visible body parts. Extensive experiments over five challenging datasets for two tasks (occluded and holistic Re-ID) demonstrate that our proposed PFD is superior promising, which performs favorably against state-of-the-art methods. Code is available at https://github.com/WangTaoAs/PFD_Net
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菜菜完成签到,获得积分10
刚刚
chillin完成签到 ,获得积分10
1秒前
大壮完成签到,获得积分10
1秒前
1秒前
七七发布了新的文献求助10
1秒前
tu完成签到,获得积分20
1秒前
江任意西完成签到 ,获得积分10
2秒前
2秒前
陈椅子的求学完成签到,获得积分10
2秒前
赘婿应助mcsmdxs采纳,获得10
2秒前
鉴定为寄完成签到,获得积分20
2秒前
FLY完成签到,获得积分10
3秒前
岁月轮回发布了新的文献求助10
3秒前
sakiecon完成签到,获得积分10
3秒前
omo完成签到,获得积分10
3秒前
调研昵称发布了新的文献求助10
4秒前
4秒前
华仔应助留胡子的青柏采纳,获得10
4秒前
4秒前
建丰完成签到,获得积分10
5秒前
5秒前
乐乐应助宗笑晴采纳,获得10
5秒前
拼搏太英完成签到,获得积分10
5秒前
6秒前
susu发布了新的文献求助200
6秒前
8秒前
loveyouxkkt应助韦老虎采纳,获得30
8秒前
小蘑菇应助含糊采纳,获得10
9秒前
深情安青应助狂野觅云采纳,获得10
9秒前
鉴定为寄发布了新的文献求助30
10秒前
夜白举报无奈的浩宇求助涉嫌违规
10秒前
10秒前
11秒前
跳跃尔容发布了新的文献求助10
11秒前
青山发布了新的文献求助26
11秒前
11秒前
Agernon应助韦老虎采纳,获得10
12秒前
沉默沛岚发布了新的文献求助30
12秒前
12秒前
程程发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762