Pose-Guided Feature Disentangling for Occluded Person Re-identification Based on Transformer

计算机科学 变压器 人工智能 计算机视觉 图形 匹配(统计) 模式识别(心理学) 姿势 特征匹配 特征提取 理论计算机科学 工程类 电压 数学 统计 电气工程
作者
Tao Wang,Hong Liu,Pinhao Song,Tianyu Guo,Wei Shi
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:36 (3): 2540-2549 被引量:107
标识
DOI:10.1609/aaai.v36i3.20155
摘要

Occluded person re-identification is a challenging task as human body parts could be occluded by some obstacles (e.g. trees, cars, and pedestrians) in certain scenes. Some existing pose-guided methods solve this problem by aligning body parts according to graph matching, but these graph-based methods are not intuitive and complicated. Therefore, we propose a transformer-based Pose-guided Feature Disentangling (PFD) method by utilizing pose information to clearly disentangle semantic components (e.g. human body or joint parts) and selectively match non-occluded parts correspondingly. First, Vision Transformer (ViT) is used to extract the patch features with its strong capability. Second, to preliminarily disentangle the pose information from patch information, the matching and distributing mechanism is leveraged in Pose-guided Feature Aggregation (PFA) module. Third, a set of learnable semantic views are introduced in transformer decoder to implicitly enhance the disentangled body part features. However, those semantic views are not guaranteed to be related to the body without additional supervision. Therefore, Pose-View Matching (PVM) module is proposed to explicitly match visible body parts and automatically separate occlusion features. Fourth, to better prevent the interference of occlusions, we design a Pose-guided Push Loss to emphasize the features of visible body parts. Extensive experiments over five challenging datasets for two tasks (occluded and holistic Re-ID) demonstrate that our proposed PFD is superior promising, which performs favorably against state-of-the-art methods. Code is available at https://github.com/WangTaoAs/PFD_Net

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzrrr发布了新的文献求助10
刚刚
rmrb完成签到,获得积分10
刚刚
bkagyin应助WaitP采纳,获得30
1秒前
开开发布了新的文献求助10
1秒前
清新的问枫完成签到,获得积分10
1秒前
搜集达人应助hexy629采纳,获得20
1秒前
科研通AI6应助D-L@rabbit采纳,获得10
2秒前
2秒前
马亚飞完成签到,获得积分10
3秒前
4秒前
5秒前
我是老大应助嘻嘻采纳,获得30
5秒前
曾经若南完成签到 ,获得积分10
5秒前
lulu发布了新的文献求助10
5秒前
领导范儿应助changnan采纳,获得10
6秒前
6秒前
fiife应助YY采纳,获得10
7秒前
CC完成签到,获得积分10
7秒前
Soluja完成签到,获得积分20
7秒前
开开完成签到,获得积分10
7秒前
Juliette发布了新的文献求助10
8秒前
YYAXL发布了新的文献求助20
8秒前
普萘洛尔完成签到,获得积分10
8秒前
8秒前
hulian发布了新的文献求助10
8秒前
9秒前
苏梗发布了新的文献求助10
10秒前
小蘑菇应助子小采纳,获得10
10秒前
MMMM发布了新的文献求助30
10秒前
小何发布了新的文献求助50
11秒前
wanci应助丶huasheng采纳,获得10
12秒前
小正发布了新的文献求助10
13秒前
13秒前
14秒前
17秒前
18秒前
bubb1e完成签到,获得积分10
18秒前
在水一方应助Soluja采纳,获得30
19秒前
咩咩兔发布了新的文献求助10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589963
求助须知:如何正确求助?哪些是违规求助? 4674416
关于积分的说明 14793871
捐赠科研通 4629469
什么是DOI,文献DOI怎么找? 2532480
邀请新用户注册赠送积分活动 1501159
关于科研通互助平台的介绍 1468527