Pose-Guided Feature Disentangling for Occluded Person Re-identification Based on Transformer

计算机科学 变压器 人工智能 计算机视觉 图形 匹配(统计) 模式识别(心理学) 姿势 特征匹配 特征提取 理论计算机科学 工程类 电压 数学 统计 电气工程
作者
Tao Wang,Hong Liu,Pinhao Song,Tianyu Guo,Wei Shi
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:36 (3): 2540-2549 被引量:107
标识
DOI:10.1609/aaai.v36i3.20155
摘要

Occluded person re-identification is a challenging task as human body parts could be occluded by some obstacles (e.g. trees, cars, and pedestrians) in certain scenes. Some existing pose-guided methods solve this problem by aligning body parts according to graph matching, but these graph-based methods are not intuitive and complicated. Therefore, we propose a transformer-based Pose-guided Feature Disentangling (PFD) method by utilizing pose information to clearly disentangle semantic components (e.g. human body or joint parts) and selectively match non-occluded parts correspondingly. First, Vision Transformer (ViT) is used to extract the patch features with its strong capability. Second, to preliminarily disentangle the pose information from patch information, the matching and distributing mechanism is leveraged in Pose-guided Feature Aggregation (PFA) module. Third, a set of learnable semantic views are introduced in transformer decoder to implicitly enhance the disentangled body part features. However, those semantic views are not guaranteed to be related to the body without additional supervision. Therefore, Pose-View Matching (PVM) module is proposed to explicitly match visible body parts and automatically separate occlusion features. Fourth, to better prevent the interference of occlusions, we design a Pose-guided Push Loss to emphasize the features of visible body parts. Extensive experiments over five challenging datasets for two tasks (occluded and holistic Re-ID) demonstrate that our proposed PFD is superior promising, which performs favorably against state-of-the-art methods. Code is available at https://github.com/WangTaoAs/PFD_Net
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐完成签到,获得积分20
4秒前
Moonboss发布了新的文献求助10
4秒前
4秒前
5秒前
木子木公完成签到,获得积分10
5秒前
snow应助zinc采纳,获得10
5秒前
Lucas选李华完成签到 ,获得积分10
7秒前
8秒前
Allen发布了新的文献求助10
9秒前
懦弱的祥发布了新的文献求助10
9秒前
王弘化应助开朗白玉采纳,获得10
10秒前
啥东西啥发布了新的文献求助30
12秒前
13秒前
13秒前
万能图书馆应助Lanyiyang采纳,获得10
13秒前
14秒前
Cain应助吴未采纳,获得10
14秒前
乐兰正雪发布了新的文献求助10
15秒前
Ava应助慕课魔芋采纳,获得10
17秒前
17秒前
封迎松发布了新的文献求助10
18秒前
光亮语梦完成签到 ,获得积分10
19秒前
wang5945发布了新的文献求助10
19秒前
19秒前
感动归尘发布了新的文献求助10
20秒前
无心的电话关注了科研通微信公众号
20秒前
静默向上发布了新的文献求助10
21秒前
华仔应助怕黑的砖家采纳,获得10
22秒前
1461644768完成签到,获得积分10
24秒前
25秒前
小刘爱读文献完成签到 ,获得积分10
26秒前
Allen完成签到,获得积分10
26秒前
养乐多完成签到 ,获得积分10
32秒前
34秒前
35秒前
38秒前
丰知然应助科研通管家采纳,获得10
39秒前
静默向上完成签到,获得积分10
39秒前
充电宝应助科研通管家采纳,获得10
39秒前
丰知然应助科研通管家采纳,获得10
39秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316704
求助须知:如何正确求助?哪些是违规求助? 2948473
关于积分的说明 8540804
捐赠科研通 2624359
什么是DOI,文献DOI怎么找? 1436100
科研通“疑难数据库(出版商)”最低求助积分说明 665796
邀请新用户注册赠送积分活动 651724