亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Pose-Guided Feature Disentangling for Occluded Person Re-identification Based on Transformer

计算机科学 变压器 人工智能 计算机视觉 图形 匹配(统计) 模式识别(心理学) 姿势 特征匹配 特征提取 理论计算机科学 工程类 电压 数学 统计 电气工程
作者
Tao Wang,Hong Liu,Pinhao Song,Tianyu Guo,Wei Shi
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:36 (3): 2540-2549 被引量:107
标识
DOI:10.1609/aaai.v36i3.20155
摘要

Occluded person re-identification is a challenging task as human body parts could be occluded by some obstacles (e.g. trees, cars, and pedestrians) in certain scenes. Some existing pose-guided methods solve this problem by aligning body parts according to graph matching, but these graph-based methods are not intuitive and complicated. Therefore, we propose a transformer-based Pose-guided Feature Disentangling (PFD) method by utilizing pose information to clearly disentangle semantic components (e.g. human body or joint parts) and selectively match non-occluded parts correspondingly. First, Vision Transformer (ViT) is used to extract the patch features with its strong capability. Second, to preliminarily disentangle the pose information from patch information, the matching and distributing mechanism is leveraged in Pose-guided Feature Aggregation (PFA) module. Third, a set of learnable semantic views are introduced in transformer decoder to implicitly enhance the disentangled body part features. However, those semantic views are not guaranteed to be related to the body without additional supervision. Therefore, Pose-View Matching (PVM) module is proposed to explicitly match visible body parts and automatically separate occlusion features. Fourth, to better prevent the interference of occlusions, we design a Pose-guided Push Loss to emphasize the features of visible body parts. Extensive experiments over five challenging datasets for two tasks (occluded and holistic Re-ID) demonstrate that our proposed PFD is superior promising, which performs favorably against state-of-the-art methods. Code is available at https://github.com/WangTaoAs/PFD_Net
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助科研通管家采纳,获得10
2秒前
3秒前
感动的春天完成签到,获得积分10
6秒前
8秒前
9秒前
善学以致用应助支水云采纳,获得10
11秒前
阿亞完成签到,获得积分10
11秒前
13秒前
22秒前
25秒前
26秒前
文静的听荷完成签到 ,获得积分10
27秒前
我是老大应助wutong采纳,获得10
28秒前
chenting完成签到 ,获得积分10
28秒前
28秒前
支水云发布了新的文献求助10
29秒前
科研通AI2S应助嗯哼哈哈采纳,获得10
30秒前
32秒前
hqh发布了新的文献求助10
32秒前
dew发布了新的文献求助10
36秒前
40秒前
Vegeta完成签到 ,获得积分10
45秒前
eye发布了新的文献求助10
46秒前
Dritsw应助dew采纳,获得10
50秒前
51秒前
52秒前
英俊的铭应助陈C采纳,获得10
57秒前
科研通AI5应助郭燥采纳,获得10
1分钟前
w1x2123完成签到,获得积分10
1分钟前
单薄归尘完成签到 ,获得积分10
1分钟前
葱饼完成签到 ,获得积分10
1分钟前
星河完成签到,获得积分10
1分钟前
caowen完成签到 ,获得积分10
1分钟前
落后紫夏完成签到,获得积分10
1分钟前
1分钟前
1分钟前
在水一方应助罗舒采纳,获得10
1分钟前
jane发布了新的文献求助10
1分钟前
吴糖发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965582
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155405
捐赠科研通 3245330
什么是DOI,文献DOI怎么找? 1792840
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176