A 4.57 μW@120fps Vision System of Sensing with Computing for BNN-Based Perception Applications

计算机科学 图像处理 计算机硬件 冯·诺依曼建筑 嵌入式系统 人工智能 图像(数学) 操作系统
作者
Han Xu,Zheyu Liu,Ziwei Li,Erxiang Ren,Maimaiti Nazhamati,Fei Qiao,Li Luo,Qi Wei,Xin-Jun Liu,Huazhong Yang
标识
DOI:10.1109/a-sscc53895.2021.9634759
摘要

In AIoT era, intelligent vision perception systems are widely deployed in edges. As shown in Fig. 1, due to limited energy budget, terminal devices usually adopt hierarchical processing architecture. A coarse object detection algorithm runs in always-on mode, and gets ready to trigger subsequent complex algorithms for precise recognition or segmentation. In conventional digital vision processing frameworks, light-induced photocurrents must be transformed to voltage ${\mathrm {(I_{ph}-to-V)}}$, converted to digital signals (A-to-D), transferred on-board to processors and exchanged between memory and processing elements. Smart vision chips provide promising solutions for cutting down these power overheads, such as placing analog processing circuits near the pixel array [2], customizing the analog-to-digital converter (ADC) which is capable of convolution [3] or adding processing circuits deeply into pixels to perform in-sensor current-domain MAC operations [4]. However, the photocurrent conversion ${\mathrm {(I_{ph}-to-V)}}$ circuits are still reserved in those works; besides, they could only complete 1st-layer convolution for low-level features extraction, and are unable to process subsequent layers for end-to-end perception tasks, which limits the processing capability with small CNN model. Additionally, systems that implement whole CNN algorithms are also proposed by integrating CIS with an analog processor in one chip [5] or stacking a CIS chip with a digital processor chip [6]. But power overheads on data transmission and memory access are still unsolved because these designs separate sensing and computing, and adopt conventional Von Neumann architecture with much memory access.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Totravel完成签到,获得积分10
刚刚
眉间尺完成签到,获得积分10
1秒前
花痴的小松鼠完成签到,获得积分10
1秒前
Maestro_S发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
xuexi完成签到,获得积分10
3秒前
桐桐应助江林林采纳,获得10
3秒前
3秒前
ZCX完成签到 ,获得积分10
3秒前
小恺发布了新的文献求助10
4秒前
adminual发布了新的文献求助10
4秒前
是是是发布了新的文献求助10
4秒前
4秒前
wyq发布了新的文献求助10
4秒前
极度疯狂发布了新的文献求助10
5秒前
寻光人发布了新的文献求助10
5秒前
11231发布了新的文献求助10
5秒前
xiha西希发布了新的文献求助10
5秒前
烟花应助Rosaline采纳,获得100
5秒前
key发布了新的文献求助10
5秒前
LXK完成签到,获得积分10
6秒前
Yuanyuan发布了新的文献求助20
6秒前
搜集达人应助张瑜采纳,获得10
6秒前
6秒前
无极微光应助卓头OvQ采纳,获得20
6秒前
小鳗鱼完成签到,获得积分20
7秒前
缘然发布了新的文献求助10
7秒前
zzz完成签到,获得积分10
7秒前
帅气航空发布了新的文献求助10
7秒前
星辰大海应助www111采纳,获得10
7秒前
wanci应助we采纳,获得10
10秒前
10秒前
小恺完成签到,获得积分10
11秒前
科研通AI6应助WH采纳,获得10
11秒前
Jamestangbw发布了新的文献求助10
11秒前
活力谷南完成签到,获得积分10
12秒前
冰淇淋发布了新的文献求助10
13秒前
揽月完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653643
求助须知:如何正确求助?哪些是违规求助? 4790334
关于积分的说明 15065238
捐赠科研通 4812289
什么是DOI,文献DOI怎么找? 2574395
邀请新用户注册赠送积分活动 1529973
关于科研通互助平台的介绍 1488708