A 4.57 μW@120fps Vision System of Sensing with Computing for BNN-Based Perception Applications

计算机科学 图像处理 计算机硬件 冯·诺依曼建筑 嵌入式系统 人工智能 图像(数学) 操作系统
作者
Han Xu,Zheyu Liu,Ziwei Li,Erxiang Ren,Maimaiti Nazhamati,Fei Qiao,Li Luo,Qi Wei,Xin-Jun Liu,Huazhong Yang
标识
DOI:10.1109/a-sscc53895.2021.9634759
摘要

In AIoT era, intelligent vision perception systems are widely deployed in edges. As shown in Fig. 1, due to limited energy budget, terminal devices usually adopt hierarchical processing architecture. A coarse object detection algorithm runs in always-on mode, and gets ready to trigger subsequent complex algorithms for precise recognition or segmentation. In conventional digital vision processing frameworks, light-induced photocurrents must be transformed to voltage ${\mathrm {(I_{ph}-to-V)}}$, converted to digital signals (A-to-D), transferred on-board to processors and exchanged between memory and processing elements. Smart vision chips provide promising solutions for cutting down these power overheads, such as placing analog processing circuits near the pixel array [2], customizing the analog-to-digital converter (ADC) which is capable of convolution [3] or adding processing circuits deeply into pixels to perform in-sensor current-domain MAC operations [4]. However, the photocurrent conversion ${\mathrm {(I_{ph}-to-V)}}$ circuits are still reserved in those works; besides, they could only complete 1st-layer convolution for low-level features extraction, and are unable to process subsequent layers for end-to-end perception tasks, which limits the processing capability with small CNN model. Additionally, systems that implement whole CNN algorithms are also proposed by integrating CIS with an analog processor in one chip [5] or stacking a CIS chip with a digital processor chip [6]. But power overheads on data transmission and memory access are still unsolved because these designs separate sensing and computing, and adopt conventional Von Neumann architecture with much memory access.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小年兽发布了新的文献求助10
1秒前
2秒前
zjr发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
科研通AI2S应助朱朱采纳,获得10
6秒前
7秒前
小蘑菇应助汤mou采纳,获得10
7秒前
8秒前
8秒前
未来可期发布了新的文献求助10
9秒前
11秒前
梦桃发布了新的文献求助30
11秒前
嗯哼应助优雅友菱采纳,获得30
12秒前
霸气连碧发布了新的文献求助10
12秒前
朱朱完成签到,获得积分10
13秒前
13秒前
新星完成签到 ,获得积分10
13秒前
yuyu发布了新的文献求助10
14秒前
15秒前
16秒前
liuqizong123发布了新的文献求助10
16秒前
MorningStar应助科研通管家采纳,获得10
17秒前
wanci应助科研通管家采纳,获得10
17秒前
修仙应助科研通管家采纳,获得10
17秒前
tuanheqi应助科研通管家采纳,获得20
17秒前
17秒前
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
tuanheqi应助科研通管家采纳,获得20
17秒前
李天恩完成签到 ,获得积分10
19秒前
20秒前
22秒前
霸气连碧完成签到,获得积分10
23秒前
Francis_完成签到,获得积分10
24秒前
25秒前
25秒前
研友_LapYN8发布了新的文献求助10
26秒前
Jessiez94发布了新的文献求助10
26秒前
高分求助中
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218048
求助须知:如何正确求助?哪些是违规求助? 2867358
关于积分的说明 8155912
捐赠科研通 2534277
什么是DOI,文献DOI怎么找? 1366843
科研通“疑难数据库(出版商)”最低求助积分说明 644866
邀请新用户注册赠送积分活动 617922