A 4.57 μW@120fps Vision System of Sensing with Computing for BNN-Based Perception Applications

计算机科学 图像处理 计算机硬件 冯·诺依曼建筑 嵌入式系统 人工智能 图像(数学) 操作系统
作者
Han Xu,Zheyu Liu,Ziwei Li,Erxiang Ren,Maimaiti Nazhamati,Fei Qiao,Li Luo,Qi Wei,Xin-Jun Liu,Huazhong Yang
标识
DOI:10.1109/a-sscc53895.2021.9634759
摘要

In AIoT era, intelligent vision perception systems are widely deployed in edges. As shown in Fig. 1, due to limited energy budget, terminal devices usually adopt hierarchical processing architecture. A coarse object detection algorithm runs in always-on mode, and gets ready to trigger subsequent complex algorithms for precise recognition or segmentation. In conventional digital vision processing frameworks, light-induced photocurrents must be transformed to voltage ${\mathrm {(I_{ph}-to-V)}}$, converted to digital signals (A-to-D), transferred on-board to processors and exchanged between memory and processing elements. Smart vision chips provide promising solutions for cutting down these power overheads, such as placing analog processing circuits near the pixel array [2], customizing the analog-to-digital converter (ADC) which is capable of convolution [3] or adding processing circuits deeply into pixels to perform in-sensor current-domain MAC operations [4]. However, the photocurrent conversion ${\mathrm {(I_{ph}-to-V)}}$ circuits are still reserved in those works; besides, they could only complete 1st-layer convolution for low-level features extraction, and are unable to process subsequent layers for end-to-end perception tasks, which limits the processing capability with small CNN model. Additionally, systems that implement whole CNN algorithms are also proposed by integrating CIS with an analog processor in one chip [5] or stacking a CIS chip with a digital processor chip [6]. But power overheads on data transmission and memory access are still unsolved because these designs separate sensing and computing, and adopt conventional Von Neumann architecture with much memory access.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LBY发布了新的文献求助30
1秒前
1秒前
3秒前
5秒前
6秒前
6秒前
蒲云海发布了新的文献求助10
8秒前
wwqc完成签到,获得积分0
9秒前
10秒前
skip发布了新的文献求助10
10秒前
11秒前
miao发布了新的文献求助10
11秒前
12秒前
共享精神应助浮浮世世采纳,获得10
13秒前
14秒前
novQ发布了新的文献求助10
15秒前
爱笑以松发布了新的文献求助10
17秒前
沃德天发布了新的文献求助10
17秒前
马浩鑫完成签到,获得积分20
17秒前
乐乐应助Shan采纳,获得10
18秒前
杨19980625发布了新的文献求助10
19秒前
潜安完成签到 ,获得积分10
21秒前
无辜之卉完成签到,获得积分20
21秒前
iarve完成签到,获得积分10
21秒前
22秒前
22秒前
orixero应助杨19980625采纳,获得10
23秒前
无辜之卉发布了新的文献求助10
27秒前
Ao_Jiang完成签到,获得积分10
28秒前
沉静的芷容完成签到,获得积分10
28秒前
沃德天完成签到,获得积分10
28秒前
29秒前
31秒前
novQ完成签到,获得积分10
32秒前
33秒前
laber应助科研通管家采纳,获得50
33秒前
小二郎应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
33秒前
Lucas应助无辜之卉采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563611
求助须知:如何正确求助?哪些是违规求助? 4648542
关于积分的说明 14685176
捐赠科研通 4590481
什么是DOI,文献DOI怎么找? 2518577
邀请新用户注册赠送积分活动 1491168
关于科研通互助平台的介绍 1462471