清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A 4.57 μW@120fps Vision System of Sensing with Computing for BNN-Based Perception Applications

计算机科学 图像处理 计算机硬件 冯·诺依曼建筑 嵌入式系统 人工智能 图像(数学) 操作系统
作者
Han Xu,Zheyu Liu,Ziwei Li,Erxiang Ren,Maimaiti Nazhamati,Fei Qiao,Li Luo,Qi Wei,Xin-Jun Liu,Huazhong Yang
标识
DOI:10.1109/a-sscc53895.2021.9634759
摘要

In AIoT era, intelligent vision perception systems are widely deployed in edges. As shown in Fig. 1, due to limited energy budget, terminal devices usually adopt hierarchical processing architecture. A coarse object detection algorithm runs in always-on mode, and gets ready to trigger subsequent complex algorithms for precise recognition or segmentation. In conventional digital vision processing frameworks, light-induced photocurrents must be transformed to voltage ${\mathrm {(I_{ph}-to-V)}}$, converted to digital signals (A-to-D), transferred on-board to processors and exchanged between memory and processing elements. Smart vision chips provide promising solutions for cutting down these power overheads, such as placing analog processing circuits near the pixel array [2], customizing the analog-to-digital converter (ADC) which is capable of convolution [3] or adding processing circuits deeply into pixels to perform in-sensor current-domain MAC operations [4]. However, the photocurrent conversion ${\mathrm {(I_{ph}-to-V)}}$ circuits are still reserved in those works; besides, they could only complete 1st-layer convolution for low-level features extraction, and are unable to process subsequent layers for end-to-end perception tasks, which limits the processing capability with small CNN model. Additionally, systems that implement whole CNN algorithms are also proposed by integrating CIS with an analog processor in one chip [5] or stacking a CIS chip with a digital processor chip [6]. But power overheads on data transmission and memory access are still unsolved because these designs separate sensing and computing, and adopt conventional Von Neumann architecture with much memory access.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12305014077完成签到 ,获得积分10
25秒前
大医仁心完成签到 ,获得积分10
42秒前
47秒前
51秒前
1分钟前
trophozoite完成签到 ,获得积分10
1分钟前
fabius0351完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
JamesPei应助科研通管家采纳,获得10
2分钟前
2分钟前
乐乐应助Developing_human采纳,获得50
2分钟前
QI完成签到 ,获得积分10
3分钟前
3分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
3分钟前
3分钟前
重庆森林应助科研通管家采纳,获得10
4分钟前
5分钟前
劉浏琉发布了新的文献求助10
5分钟前
西山菩提完成签到,获得积分10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
6分钟前
6分钟前
6分钟前
6分钟前
MchemG应助科研通管家采纳,获得20
6分钟前
香蕉觅云应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
劉浏琉完成签到,获得积分10
6分钟前
很多奶油完成签到 ,获得积分10
6分钟前
小蓝完成签到 ,获得积分10
6分钟前
香蕉觅云应助Developing_human采纳,获得30
6分钟前
Yatagarasu发布了新的文献求助10
7分钟前
wrl2023完成签到,获得积分10
7分钟前
7分钟前
7分钟前
7分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644889
求助须知:如何正确求助?哪些是违规求助? 4766363
关于积分的说明 15025903
捐赠科研通 4803275
什么是DOI,文献DOI怎么找? 2568137
邀请新用户注册赠送积分活动 1525607
关于科研通互助平台的介绍 1485151