A 4.57 μW@120fps Vision System of Sensing with Computing for BNN-Based Perception Applications

计算机科学 图像处理 计算机硬件 冯·诺依曼建筑 嵌入式系统 人工智能 图像(数学) 操作系统
作者
Han Xu,Zheyu Liu,Ziwei Li,Erxiang Ren,Maimaiti Nazhamati,Fei Qiao,Li Luo,Qi Wei,Xin-Jun Liu,Huazhong Yang
标识
DOI:10.1109/a-sscc53895.2021.9634759
摘要

In AIoT era, intelligent vision perception systems are widely deployed in edges. As shown in Fig. 1, due to limited energy budget, terminal devices usually adopt hierarchical processing architecture. A coarse object detection algorithm runs in always-on mode, and gets ready to trigger subsequent complex algorithms for precise recognition or segmentation. In conventional digital vision processing frameworks, light-induced photocurrents must be transformed to voltage ${\mathrm {(I_{ph}-to-V)}}$, converted to digital signals (A-to-D), transferred on-board to processors and exchanged between memory and processing elements. Smart vision chips provide promising solutions for cutting down these power overheads, such as placing analog processing circuits near the pixel array [2], customizing the analog-to-digital converter (ADC) which is capable of convolution [3] or adding processing circuits deeply into pixels to perform in-sensor current-domain MAC operations [4]. However, the photocurrent conversion ${\mathrm {(I_{ph}-to-V)}}$ circuits are still reserved in those works; besides, they could only complete 1st-layer convolution for low-level features extraction, and are unable to process subsequent layers for end-to-end perception tasks, which limits the processing capability with small CNN model. Additionally, systems that implement whole CNN algorithms are also proposed by integrating CIS with an analog processor in one chip [5] or stacking a CIS chip with a digital processor chip [6]. But power overheads on data transmission and memory access are still unsolved because these designs separate sensing and computing, and adopt conventional Von Neumann architecture with much memory access.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhang完成签到,获得积分10
刚刚
针地很不戳完成签到,获得积分10
刚刚
奇遇里完成签到 ,获得积分10
刚刚
眯眯眼的士萧完成签到,获得积分10
刚刚
思源应助Schmidt采纳,获得10
1秒前
1秒前
酷波er应助Ivoir采纳,获得10
1秒前
1秒前
匆匆完成签到 ,获得积分10
1秒前
苇一发布了新的文献求助10
1秒前
秋刀鱼完成签到,获得积分10
1秒前
欣慰的山竹完成签到,获得积分10
2秒前
2秒前
ping发布了新的文献求助10
2秒前
2秒前
3秒前
glany发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
3秒前
庄彧完成签到 ,获得积分0
3秒前
小青发布了新的文献求助10
4秒前
4秒前
熊大完成签到,获得积分10
4秒前
TCC发布了新的文献求助10
4秒前
aaaa完成签到,获得积分10
4秒前
清秀曼彤发布了新的文献求助10
4秒前
欢喜语柳发布了新的文献求助10
4秒前
阿七完成签到,获得积分10
5秒前
Leo000007发布了新的文献求助10
5秒前
喜悦音响完成签到,获得积分10
5秒前
韩梅完成签到,获得积分20
5秒前
mzm完成签到,获得积分10
5秒前
Trost发布了新的文献求助10
5秒前
Ava应助聪明胡图图采纳,获得10
5秒前
Akim应助Ll采纳,获得10
5秒前
6秒前
猫猫头发布了新的文献求助10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612759
求助须知:如何正确求助?哪些是违规求助? 4697823
关于积分的说明 14895857
捐赠科研通 4734427
什么是DOI,文献DOI怎么找? 2546674
邀请新用户注册赠送积分活动 1510710
关于科研通互助平台的介绍 1473494