A 4.57 μW@120fps Vision System of Sensing with Computing for BNN-Based Perception Applications

计算机科学 图像处理 计算机硬件 冯·诺依曼建筑 嵌入式系统 人工智能 图像(数学) 操作系统
作者
Han Xu,Zheyu Liu,Ziwei Li,Erxiang Ren,Maimaiti Nazhamati,Fei Qiao,Li Luo,Qi Wei,Xin-Jun Liu,Huazhong Yang
标识
DOI:10.1109/a-sscc53895.2021.9634759
摘要

In AIoT era, intelligent vision perception systems are widely deployed in edges. As shown in Fig. 1, due to limited energy budget, terminal devices usually adopt hierarchical processing architecture. A coarse object detection algorithm runs in always-on mode, and gets ready to trigger subsequent complex algorithms for precise recognition or segmentation. In conventional digital vision processing frameworks, light-induced photocurrents must be transformed to voltage ${\mathrm {(I_{ph}-to-V)}}$, converted to digital signals (A-to-D), transferred on-board to processors and exchanged between memory and processing elements. Smart vision chips provide promising solutions for cutting down these power overheads, such as placing analog processing circuits near the pixel array [2], customizing the analog-to-digital converter (ADC) which is capable of convolution [3] or adding processing circuits deeply into pixels to perform in-sensor current-domain MAC operations [4]. However, the photocurrent conversion ${\mathrm {(I_{ph}-to-V)}}$ circuits are still reserved in those works; besides, they could only complete 1st-layer convolution for low-level features extraction, and are unable to process subsequent layers for end-to-end perception tasks, which limits the processing capability with small CNN model. Additionally, systems that implement whole CNN algorithms are also proposed by integrating CIS with an analog processor in one chip [5] or stacking a CIS chip with a digital processor chip [6]. But power overheads on data transmission and memory access are still unsolved because these designs separate sensing and computing, and adopt conventional Von Neumann architecture with much memory access.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姬鲁宁完成签到 ,获得积分10
刚刚
1秒前
555555oooo完成签到,获得积分10
1秒前
妮妮完成签到,获得积分10
2秒前
3秒前
4秒前
大力水手完成签到,获得积分0
4秒前
5秒前
MORNING完成签到,获得积分10
6秒前
TJH完成签到,获得积分10
7秒前
Dreamheyheyhey完成签到,获得积分10
8秒前
CP发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
琉璃完成签到,获得积分10
9秒前
su完成签到,获得积分10
9秒前
小李完成签到 ,获得积分10
9秒前
jasonwee发布了新的文献求助10
9秒前
和气生财君完成签到 ,获得积分10
11秒前
mj发布了新的文献求助20
11秒前
GankhuyagJavzan完成签到,获得积分10
11秒前
哈哈哥完成签到,获得积分10
13秒前
英俊的铭应助TNU采纳,获得10
15秒前
财路通八方完成签到 ,获得积分10
18秒前
19秒前
chenyou完成签到,获得积分10
23秒前
海虎爆破拳完成签到,获得积分10
24秒前
25秒前
薏仁完成签到 ,获得积分10
26秒前
baibai完成签到,获得积分10
28秒前
乐乐应助nakl采纳,获得10
29秒前
67号完成签到 ,获得积分10
30秒前
Fourteen完成签到 ,获得积分10
32秒前
香菜张发布了新的文献求助10
34秒前
Amosummer完成签到,获得积分10
34秒前
35秒前
小菲完成签到,获得积分10
36秒前
霸气鞯完成签到 ,获得积分10
36秒前
荣枫完成签到,获得积分10
36秒前
舒心谷雪完成签到 ,获得积分10
37秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539314
求助须知:如何正确求助?哪些是违规求助? 4626076
关于积分的说明 14597627
捐赠科研通 4566895
什么是DOI,文献DOI怎么找? 2503687
邀请新用户注册赠送积分活动 1481599
关于科研通互助平台的介绍 1453173