A 4.57 μW@120fps Vision System of Sensing with Computing for BNN-Based Perception Applications

计算机科学 图像处理 计算机硬件 冯·诺依曼建筑 嵌入式系统 人工智能 图像(数学) 操作系统
作者
Han Xu,Zheyu Liu,Ziwei Li,Erxiang Ren,Maimaiti Nazhamati,Fei Qiao,Li Luo,Qi Wei,Xin-Jun Liu,Huazhong Yang
标识
DOI:10.1109/a-sscc53895.2021.9634759
摘要

In AIoT era, intelligent vision perception systems are widely deployed in edges. As shown in Fig. 1, due to limited energy budget, terminal devices usually adopt hierarchical processing architecture. A coarse object detection algorithm runs in always-on mode, and gets ready to trigger subsequent complex algorithms for precise recognition or segmentation. In conventional digital vision processing frameworks, light-induced photocurrents must be transformed to voltage ${\mathrm {(I_{ph}-to-V)}}$, converted to digital signals (A-to-D), transferred on-board to processors and exchanged between memory and processing elements. Smart vision chips provide promising solutions for cutting down these power overheads, such as placing analog processing circuits near the pixel array [2], customizing the analog-to-digital converter (ADC) which is capable of convolution [3] or adding processing circuits deeply into pixels to perform in-sensor current-domain MAC operations [4]. However, the photocurrent conversion ${\mathrm {(I_{ph}-to-V)}}$ circuits are still reserved in those works; besides, they could only complete 1st-layer convolution for low-level features extraction, and are unable to process subsequent layers for end-to-end perception tasks, which limits the processing capability with small CNN model. Additionally, systems that implement whole CNN algorithms are also proposed by integrating CIS with an analog processor in one chip [5] or stacking a CIS chip with a digital processor chip [6]. But power overheads on data transmission and memory access are still unsolved because these designs separate sensing and computing, and adopt conventional Von Neumann architecture with much memory access.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ni发布了新的文献求助10
1秒前
隐形曼青应助敏感的芷采纳,获得10
1秒前
ybb完成签到,获得积分10
4秒前
4秒前
快乐的伟诚完成签到,获得积分10
6秒前
搜集达人应助大胆夜绿采纳,获得10
6秒前
6秒前
7秒前
辛勤的无血完成签到,获得积分10
10秒前
11秒前
rookie完成签到,获得积分10
11秒前
11秒前
ni完成签到,获得积分10
12秒前
step_stone给step_stone的求助进行了留言
13秒前
13秒前
荒野星辰发布了新的文献求助10
14秒前
敏感的芷完成签到,获得积分20
14秒前
16秒前
16秒前
17秒前
luoshi应助沐风采纳,获得20
17秒前
安南完成签到,获得积分10
17秒前
香蕉冬云完成签到 ,获得积分10
18秒前
自信安荷发布了新的文献求助200
18秒前
鱼雷发布了新的文献求助10
19秒前
兔子发布了新的文献求助10
19秒前
19秒前
田様应助coffee采纳,获得10
20秒前
20秒前
专注鼠标完成签到,获得积分10
20秒前
LingYing完成签到 ,获得积分10
21秒前
cheche完成签到,获得积分10
22秒前
liushun完成签到,获得积分10
22秒前
caoyy发布了新的文献求助10
22秒前
zzt发布了新的文献求助10
23秒前
25秒前
25秒前
章家炜发布了新的文献求助10
26秒前
脑洞疼应助xfxx采纳,获得10
26秒前
wanci应助茶博士采纳,获得10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824