A 4.57 μW@120fps Vision System of Sensing with Computing for BNN-Based Perception Applications

计算机科学 图像处理 计算机硬件 冯·诺依曼建筑 嵌入式系统 人工智能 图像(数学) 操作系统
作者
Han Xu,Zheyu Liu,Ziwei Li,Erxiang Ren,Maimaiti Nazhamati,Fei Qiao,Li Luo,Qi Wei,Xin-Jun Liu,Huazhong Yang
标识
DOI:10.1109/a-sscc53895.2021.9634759
摘要

In AIoT era, intelligent vision perception systems are widely deployed in edges. As shown in Fig. 1, due to limited energy budget, terminal devices usually adopt hierarchical processing architecture. A coarse object detection algorithm runs in always-on mode, and gets ready to trigger subsequent complex algorithms for precise recognition or segmentation. In conventional digital vision processing frameworks, light-induced photocurrents must be transformed to voltage ${\mathrm {(I_{ph}-to-V)}}$, converted to digital signals (A-to-D), transferred on-board to processors and exchanged between memory and processing elements. Smart vision chips provide promising solutions for cutting down these power overheads, such as placing analog processing circuits near the pixel array [2], customizing the analog-to-digital converter (ADC) which is capable of convolution [3] or adding processing circuits deeply into pixels to perform in-sensor current-domain MAC operations [4]. However, the photocurrent conversion ${\mathrm {(I_{ph}-to-V)}}$ circuits are still reserved in those works; besides, they could only complete 1st-layer convolution for low-level features extraction, and are unable to process subsequent layers for end-to-end perception tasks, which limits the processing capability with small CNN model. Additionally, systems that implement whole CNN algorithms are also proposed by integrating CIS with an analog processor in one chip [5] or stacking a CIS chip with a digital processor chip [6]. But power overheads on data transmission and memory access are still unsolved because these designs separate sensing and computing, and adopt conventional Von Neumann architecture with much memory access.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lanrete完成签到,获得积分0
1秒前
ATOM发布了新的文献求助10
1秒前
1秒前
jaing完成签到,获得积分10
1秒前
认真夜云完成签到,获得积分10
2秒前
酸辣田田子完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
peiter发布了新的文献求助10
3秒前
3秒前
horizon发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
时光完成签到,获得积分10
5秒前
李知恩完成签到,获得积分10
5秒前
沉沉完成签到 ,获得积分10
5秒前
穆赤发布了新的文献求助10
5秒前
Wu发布了新的文献求助10
6秒前
An发布了新的文献求助10
6秒前
漫鱼完成签到,获得积分10
6秒前
烟花应助易琚采纳,获得10
6秒前
kk发布了新的文献求助10
6秒前
流川发布了新的文献求助10
7秒前
7秒前
章鱼发布了新的文献求助10
7秒前
chenhouhan发布了新的文献求助10
7秒前
牛曙东完成签到,获得积分10
8秒前
里里应助刘研采纳,获得10
8秒前
8秒前
所所应助付艳采纳,获得10
9秒前
9秒前
Lucas应助第七个星球采纳,获得10
9秒前
mooncake发布了新的文献求助10
9秒前
zx发布了新的文献求助10
10秒前
123完成签到,获得积分10
10秒前
Ludi完成签到,获得积分10
10秒前
伏波完成签到,获得积分0
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629839
求助须知:如何正确求助?哪些是违规求助? 4720715
关于积分的说明 14970892
捐赠科研通 4787804
什么是DOI,文献DOI怎么找? 2556517
邀请新用户注册赠送积分活动 1517691
关于科研通互助平台的介绍 1478271