亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A 4.57 μW@120fps Vision System of Sensing with Computing for BNN-Based Perception Applications

计算机科学 图像处理 计算机硬件 冯·诺依曼建筑 嵌入式系统 人工智能 图像(数学) 操作系统
作者
Han Xu,Zheyu Liu,Ziwei Li,Erxiang Ren,Maimaiti Nazhamati,Fei Qiao,Li Luo,Qi Wei,Xin-Jun Liu,Huazhong Yang
标识
DOI:10.1109/a-sscc53895.2021.9634759
摘要

In AIoT era, intelligent vision perception systems are widely deployed in edges. As shown in Fig. 1, due to limited energy budget, terminal devices usually adopt hierarchical processing architecture. A coarse object detection algorithm runs in always-on mode, and gets ready to trigger subsequent complex algorithms for precise recognition or segmentation. In conventional digital vision processing frameworks, light-induced photocurrents must be transformed to voltage ${\mathrm {(I_{ph}-to-V)}}$, converted to digital signals (A-to-D), transferred on-board to processors and exchanged between memory and processing elements. Smart vision chips provide promising solutions for cutting down these power overheads, such as placing analog processing circuits near the pixel array [2], customizing the analog-to-digital converter (ADC) which is capable of convolution [3] or adding processing circuits deeply into pixels to perform in-sensor current-domain MAC operations [4]. However, the photocurrent conversion ${\mathrm {(I_{ph}-to-V)}}$ circuits are still reserved in those works; besides, they could only complete 1st-layer convolution for low-level features extraction, and are unable to process subsequent layers for end-to-end perception tasks, which limits the processing capability with small CNN model. Additionally, systems that implement whole CNN algorithms are also proposed by integrating CIS with an analog processor in one chip [5] or stacking a CIS chip with a digital processor chip [6]. But power overheads on data transmission and memory access are still unsolved because these designs separate sensing and computing, and adopt conventional Von Neumann architecture with much memory access.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
doctor_quyi发布了新的文献求助10
5秒前
wangran_778完成签到,获得积分10
7秒前
9秒前
10秒前
李义志完成签到,获得积分10
13秒前
13秒前
佳佳发布了新的文献求助10
13秒前
啊哦发布了新的文献求助30
14秒前
今后应助李义志采纳,获得10
16秒前
科研通AI6应助黄黄黄采纳,获得10
16秒前
无极微光应助缓慢的藏鸟采纳,获得20
17秒前
贱小贱完成签到,获得积分10
17秒前
ZYP发布了新的文献求助10
20秒前
科研狗完成签到 ,获得积分10
21秒前
无花果应助好了没了采纳,获得10
21秒前
科研通AI6应助啊哦采纳,获得30
26秒前
黎娅完成签到 ,获得积分10
27秒前
29秒前
32秒前
好了没了完成签到,获得积分10
32秒前
挚智完成签到 ,获得积分10
34秒前
34秒前
好了没了发布了新的文献求助10
35秒前
lele完成签到,获得积分10
35秒前
迷路世立完成签到,获得积分10
36秒前
38秒前
FashionBoy应助vinss66home采纳,获得10
39秒前
嗯嗯嗯嗯嗯完成签到 ,获得积分10
40秒前
遇晚完成签到,获得积分10
47秒前
肥牛完成签到,获得积分10
48秒前
51秒前
解你所忧完成签到 ,获得积分10
52秒前
SciGPT应助浅呀呀呀采纳,获得10
54秒前
ZepHyR发布了新的文献求助10
56秒前
1分钟前
李义志发布了新的文献求助10
1分钟前
魁梧的衫完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639422
求助须知:如何正确求助?哪些是违规求助? 4748203
关于积分的说明 15006376
捐赠科研通 4797589
什么是DOI,文献DOI怎么找? 2563600
邀请新用户注册赠送积分活动 1522598
关于科研通互助平台的介绍 1482264