A 4.57 μW@120fps Vision System of Sensing with Computing for BNN-Based Perception Applications

计算机科学 图像处理 计算机硬件 冯·诺依曼建筑 嵌入式系统 人工智能 图像(数学) 操作系统
作者
Han Xu,Zheyu Liu,Ziwei Li,Erxiang Ren,Maimaiti Nazhamati,Fei Qiao,Li Luo,Qi Wei,Xin-Jun Liu,Huazhong Yang
标识
DOI:10.1109/a-sscc53895.2021.9634759
摘要

In AIoT era, intelligent vision perception systems are widely deployed in edges. As shown in Fig. 1, due to limited energy budget, terminal devices usually adopt hierarchical processing architecture. A coarse object detection algorithm runs in always-on mode, and gets ready to trigger subsequent complex algorithms for precise recognition or segmentation. In conventional digital vision processing frameworks, light-induced photocurrents must be transformed to voltage ${\mathrm {(I_{ph}-to-V)}}$, converted to digital signals (A-to-D), transferred on-board to processors and exchanged between memory and processing elements. Smart vision chips provide promising solutions for cutting down these power overheads, such as placing analog processing circuits near the pixel array [2], customizing the analog-to-digital converter (ADC) which is capable of convolution [3] or adding processing circuits deeply into pixels to perform in-sensor current-domain MAC operations [4]. However, the photocurrent conversion ${\mathrm {(I_{ph}-to-V)}}$ circuits are still reserved in those works; besides, they could only complete 1st-layer convolution for low-level features extraction, and are unable to process subsequent layers for end-to-end perception tasks, which limits the processing capability with small CNN model. Additionally, systems that implement whole CNN algorithms are also proposed by integrating CIS with an analog processor in one chip [5] or stacking a CIS chip with a digital processor chip [6]. But power overheads on data transmission and memory access are still unsolved because these designs separate sensing and computing, and adopt conventional Von Neumann architecture with much memory access.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清浅发布了新的文献求助30
刚刚
太想进部了完成签到,获得积分10
刚刚
刚刚
JamesPei应助干净的友卉采纳,获得10
刚刚
打打应助今天没有哭鸭采纳,获得10
刚刚
JamesPei应助易烊千玺老婆采纳,获得10
刚刚
刚刚
1秒前
852应助SYX采纳,获得30
1秒前
斯文败类应助小小小小采纳,获得10
1秒前
科研通AI6应助HAHA采纳,获得10
1秒前
坚定晓兰应助HAHA采纳,获得10
1秒前
科研通AI6应助HAHA采纳,获得10
1秒前
热心的易烟完成签到,获得积分10
1秒前
2秒前
Hello应助小学生采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
song发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
alvis关注了科研通微信公众号
4秒前
LingMg发布了新的文献求助30
5秒前
不安溪灵完成签到,获得积分10
5秒前
5秒前
5秒前
熊猫海发布了新的文献求助10
5秒前
6秒前
伞下铭发布了新的文献求助10
6秒前
6秒前
7秒前
Herzing发布了新的文献求助10
7秒前
7秒前
喜悦发卡完成签到,获得积分10
8秒前
小青椒应助斯文明杰采纳,获得30
8秒前
斯文凝蕊发布了新的文献求助10
8秒前
大个应助www采纳,获得10
8秒前
Y1B完成签到,获得积分10
8秒前
8秒前
糯米饭完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667047
求助须知:如何正确求助?哪些是违规求助? 4883873
关于积分的说明 15118527
捐赠科研通 4825937
什么是DOI,文献DOI怎么找? 2583643
邀请新用户注册赠送积分活动 1537807
关于科研通互助平台的介绍 1496002