A multi-method analytical approach to predicting young adults’ intention to invest in mHealth during the COVID-19 pandemic

健康 大流行 结构方程建模 互联网 定性比较分析 远程医疗 2019年冠状病毒病(COVID-19) 医疗保健 心理学 计算机科学 应用心理学 医学 机器学习 护理部 政治学 万维网 心理干预 病理 法学 传染病(医学专业) 疾病
作者
Najmul Hasan,Yukun Bao,Raymond Chiong
出处
期刊:Telematics and Informatics [Elsevier]
卷期号:68: 101765-101765 被引量:15
标识
DOI:10.1016/j.tele.2021.101765
摘要

Mobile-based health (mHealth) systems are proving to be a popular alternative to the traditional visits to healthcare providers. They can also be useful and effective in fighting the spread of infectious diseases, such as the COVID-19 pandemic. Even though young adults are the most prevalent mHealth user group, the relevant literature has overlooked their intention to invest in and use mHealth services. This study aims to investigate the predictors that influence young adults' intention to invest in mHealth (IINmH), particularly during the COVID-19 crisis, by designing a research methodology that incorporates both the health belief model (HBM) and the expectation-confirmation model (ECM). As an expansion of the integrated HBM-ECM model, this study proposes two additional predictors: mobile Internet speed and mobile Internet cost. A multi-method analytical approach, including partial least squares structural equation modelling (PLS-SEM), fuzzy-set qualitative comparative analysis (fsQCA), and machine learning (ML), was utilised together with a sample dataset of 558 respondents. The dataset-about young adults in Bangladesh with an experience of using mHealth-was obtained through a structured questionnaire to examine the complex causal relationships of the integrated model. The findings from PLS-SEM indicate that value-for-money, mobile Internet cost, health motivation, and confirmation of services all have a substantial impact on young adults' IINmH during the COVID-19 pandemic. At the same time, the fsQCA results indicate that a combination of predictors, instead of any individual predictor, had a significant impact on predicting IINmH. Among ML methods, the XGBoost classifier outperformed other classifiers in predicting the IINmH, which was then used to perform sensitivity analysis to determine the relevance of features. We expect this multi-method analytical approach to make a significant contribution to the mHealth domain as well as the broad information systems literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助阿盛采纳,获得10
1秒前
feb完成签到,获得积分10
2秒前
科研小白发布了新的文献求助10
3秒前
SCI发布了新的文献求助10
4秒前
4秒前
MY发布了新的文献求助30
5秒前
ding应助晓湫采纳,获得10
5秒前
小海贼完成签到 ,获得积分10
7秒前
打打应助dicryn2采纳,获得20
7秒前
7秒前
李健应助坦克班班长采纳,获得200
7秒前
佳仔完成签到,获得积分10
7秒前
付伟完成签到,获得积分20
8秒前
可一发布了新的文献求助10
9秒前
科研通AI2S应助冷酷非笑采纳,获得30
10秒前
所所应助vanshaw.vs采纳,获得10
10秒前
lin发布了新的文献求助10
11秒前
随机子应助微笑驳采纳,获得10
11秒前
共享精神应助吗喽小祁采纳,获得10
12秒前
付伟发布了新的文献求助20
13秒前
13秒前
wpz完成签到,获得积分10
13秒前
18秒前
后知后觉发布了新的文献求助10
19秒前
20秒前
易安发布了新的文献求助10
20秒前
冷酷非笑完成签到,获得积分10
24秒前
27秒前
魁梧的慕晴关注了科研通微信公众号
27秒前
27秒前
小二郎应助小易采纳,获得10
27秒前
27秒前
28秒前
玩命的骚发布了新的文献求助30
30秒前
鲁大师完成签到 ,获得积分10
30秒前
33秒前
kreatal发布了新的文献求助10
33秒前
34秒前
雅雅完成签到,获得积分10
35秒前
one-piece完成签到,获得积分10
35秒前
高分求助中
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera, Volume 3, Part 2 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165832
求助须知:如何正确求助?哪些是违规求助? 2817091
关于积分的说明 7914877
捐赠科研通 2476611
什么是DOI,文献DOI怎么找? 1319056
科研通“疑难数据库(出版商)”最低求助积分说明 632332
版权声明 602415