A multi-method analytical approach to predicting young adults’ intention to invest in mHealth during the COVID-19 pandemic

健康 大流行 结构方程建模 互联网 定性比较分析 远程医疗 2019年冠状病毒病(COVID-19) 医疗保健 心理学 计算机科学 应用心理学 医学 机器学习 护理部 政治学 万维网 心理干预 病理 法学 传染病(医学专业) 疾病
作者
Najmul Hasan,Yukun Bao,Raymond Chiong
出处
期刊:Telematics and Informatics [Elsevier BV]
卷期号:68: 101765-101765 被引量:15
标识
DOI:10.1016/j.tele.2021.101765
摘要

Mobile-based health (mHealth) systems are proving to be a popular alternative to the traditional visits to healthcare providers. They can also be useful and effective in fighting the spread of infectious diseases, such as the COVID-19 pandemic. Even though young adults are the most prevalent mHealth user group, the relevant literature has overlooked their intention to invest in and use mHealth services. This study aims to investigate the predictors that influence young adults' intention to invest in mHealth (IINmH), particularly during the COVID-19 crisis, by designing a research methodology that incorporates both the health belief model (HBM) and the expectation-confirmation model (ECM). As an expansion of the integrated HBM-ECM model, this study proposes two additional predictors: mobile Internet speed and mobile Internet cost. A multi-method analytical approach, including partial least squares structural equation modelling (PLS-SEM), fuzzy-set qualitative comparative analysis (fsQCA), and machine learning (ML), was utilised together with a sample dataset of 558 respondents. The dataset-about young adults in Bangladesh with an experience of using mHealth-was obtained through a structured questionnaire to examine the complex causal relationships of the integrated model. The findings from PLS-SEM indicate that value-for-money, mobile Internet cost, health motivation, and confirmation of services all have a substantial impact on young adults' IINmH during the COVID-19 pandemic. At the same time, the fsQCA results indicate that a combination of predictors, instead of any individual predictor, had a significant impact on predicting IINmH. Among ML methods, the XGBoost classifier outperformed other classifiers in predicting the IINmH, which was then used to perform sensitivity analysis to determine the relevance of features. We expect this multi-method analytical approach to make a significant contribution to the mHealth domain as well as the broad information systems literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青珊发布了新的文献求助10
1秒前
宣宣宣0733完成签到,获得积分10
1秒前
俊逸吐司完成签到 ,获得积分10
2秒前
ttxxcdx完成签到 ,获得积分10
3秒前
胡质斌完成签到,获得积分10
3秒前
充电宝应助科研通管家采纳,获得10
6秒前
7秒前
姚怜南完成签到,获得积分10
9秒前
青珊完成签到,获得积分10
11秒前
自觉石头完成签到 ,获得积分10
12秒前
VVTTWW完成签到 ,获得积分10
14秒前
感性的寄真完成签到 ,获得积分10
16秒前
zhang完成签到,获得积分10
19秒前
22秒前
比比谁的速度快应助zhang采纳,获得50
26秒前
绿袖子完成签到,获得积分10
28秒前
35秒前
刘刘完成签到 ,获得积分10
36秒前
执着夏岚完成签到 ,获得积分10
36秒前
Xzx1995完成签到 ,获得积分10
40秒前
Hululu完成签到 ,获得积分10
42秒前
淡然的芷荷完成签到 ,获得积分10
43秒前
GT完成签到,获得积分10
45秒前
qiancib202完成签到,获得积分10
48秒前
量子星尘发布了新的文献求助10
49秒前
等待的幼晴完成签到,获得积分10
50秒前
负责灵萱完成签到 ,获得积分10
52秒前
幽默的忆霜完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
风光无限完成签到 ,获得积分20
1分钟前
庄海棠完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
沐风完成签到 ,获得积分10
1分钟前
含糊的茹妖完成签到 ,获得积分0
1分钟前
1分钟前
huangqian完成签到,获得积分10
1分钟前
沧海一粟完成签到 ,获得积分10
1分钟前
进击的巨人完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038029
求助须知:如何正确求助?哪些是违规求助? 3575740
关于积分的说明 11373751
捐赠科研通 3305559
什么是DOI,文献DOI怎么找? 1819224
邀请新用户注册赠送积分活动 892652
科研通“疑难数据库(出版商)”最低求助积分说明 815022