A multi-method analytical approach to predicting young adults’ intention to invest in mHealth during the COVID-19 pandemic

健康 大流行 结构方程建模 互联网 定性比较分析 远程医疗 2019年冠状病毒病(COVID-19) 医疗保健 心理学 计算机科学 应用心理学 医学 机器学习 护理部 政治学 万维网 心理干预 病理 法学 传染病(医学专业) 疾病
作者
Najmul Hasan,Yukun Bao,Raymond Chiong
出处
期刊:Telematics and Informatics [Elsevier BV]
卷期号:68: 101765-101765 被引量:15
标识
DOI:10.1016/j.tele.2021.101765
摘要

Mobile-based health (mHealth) systems are proving to be a popular alternative to the traditional visits to healthcare providers. They can also be useful and effective in fighting the spread of infectious diseases, such as the COVID-19 pandemic. Even though young adults are the most prevalent mHealth user group, the relevant literature has overlooked their intention to invest in and use mHealth services. This study aims to investigate the predictors that influence young adults' intention to invest in mHealth (IINmH), particularly during the COVID-19 crisis, by designing a research methodology that incorporates both the health belief model (HBM) and the expectation-confirmation model (ECM). As an expansion of the integrated HBM-ECM model, this study proposes two additional predictors: mobile Internet speed and mobile Internet cost. A multi-method analytical approach, including partial least squares structural equation modelling (PLS-SEM), fuzzy-set qualitative comparative analysis (fsQCA), and machine learning (ML), was utilised together with a sample dataset of 558 respondents. The dataset-about young adults in Bangladesh with an experience of using mHealth-was obtained through a structured questionnaire to examine the complex causal relationships of the integrated model. The findings from PLS-SEM indicate that value-for-money, mobile Internet cost, health motivation, and confirmation of services all have a substantial impact on young adults' IINmH during the COVID-19 pandemic. At the same time, the fsQCA results indicate that a combination of predictors, instead of any individual predictor, had a significant impact on predicting IINmH. Among ML methods, the XGBoost classifier outperformed other classifiers in predicting the IINmH, which was then used to perform sensitivity analysis to determine the relevance of features. We expect this multi-method analytical approach to make a significant contribution to the mHealth domain as well as the broad information systems literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
程之杭完成签到,获得积分10
1秒前
战战发布了新的文献求助10
1秒前
zengwr发布了新的文献求助10
3秒前
科研助手6应助神的女人采纳,获得10
4秒前
呼呼啦呼啦完成签到,获得积分10
5秒前
5秒前
Jasper应助sylnd126采纳,获得10
5秒前
哈哈发布了新的文献求助20
7秒前
Anita完成签到,获得积分10
7秒前
所所应助和谐一万采纳,获得10
8秒前
高有财完成签到 ,获得积分10
8秒前
8秒前
闪闪自中完成签到,获得积分10
9秒前
11秒前
jjym完成签到,获得积分10
12秒前
图南完成签到 ,获得积分10
12秒前
酷小裤完成签到,获得积分10
12秒前
13秒前
14秒前
项初蝶发布了新的文献求助10
14秒前
独特凡松发布了新的文献求助10
14秒前
14秒前
科研通AI5应助Luminous采纳,获得10
15秒前
傅寻菱完成签到,获得积分10
16秒前
方格发布了新的文献求助10
18秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
19秒前
20秒前
风清扬发布了新的文献求助10
20秒前
会发光的碳完成签到 ,获得积分10
20秒前
21秒前
21秒前
bkagyin应助斜玉采纳,获得10
21秒前
cookie发布了新的文献求助10
22秒前
笨小孩发布了新的文献求助200
22秒前
星辰大海应助苗条遥采纳,获得10
23秒前
赘婿应助kangkang采纳,获得10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988732
求助须知:如何正确求助?哪些是违规求助? 3531027
关于积分的说明 11252281
捐赠科研通 3269732
什么是DOI,文献DOI怎么找? 1804764
邀请新用户注册赠送积分活动 881869
科研通“疑难数据库(出版商)”最低求助积分说明 809021