A multi-method analytical approach to predicting young adults’ intention to invest in mHealth during the COVID-19 pandemic

健康 大流行 结构方程建模 互联网 定性比较分析 远程医疗 2019年冠状病毒病(COVID-19) 医疗保健 心理学 计算机科学 应用心理学 医学 机器学习 护理部 政治学 万维网 心理干预 病理 法学 传染病(医学专业) 疾病
作者
Najmul Hasan,Yukun Bao,Raymond Chiong
出处
期刊:Telematics and Informatics [Elsevier BV]
卷期号:68: 101765-101765 被引量:15
标识
DOI:10.1016/j.tele.2021.101765
摘要

Mobile-based health (mHealth) systems are proving to be a popular alternative to the traditional visits to healthcare providers. They can also be useful and effective in fighting the spread of infectious diseases, such as the COVID-19 pandemic. Even though young adults are the most prevalent mHealth user group, the relevant literature has overlooked their intention to invest in and use mHealth services. This study aims to investigate the predictors that influence young adults' intention to invest in mHealth (IINmH), particularly during the COVID-19 crisis, by designing a research methodology that incorporates both the health belief model (HBM) and the expectation-confirmation model (ECM). As an expansion of the integrated HBM-ECM model, this study proposes two additional predictors: mobile Internet speed and mobile Internet cost. A multi-method analytical approach, including partial least squares structural equation modelling (PLS-SEM), fuzzy-set qualitative comparative analysis (fsQCA), and machine learning (ML), was utilised together with a sample dataset of 558 respondents. The dataset-about young adults in Bangladesh with an experience of using mHealth-was obtained through a structured questionnaire to examine the complex causal relationships of the integrated model. The findings from PLS-SEM indicate that value-for-money, mobile Internet cost, health motivation, and confirmation of services all have a substantial impact on young adults' IINmH during the COVID-19 pandemic. At the same time, the fsQCA results indicate that a combination of predictors, instead of any individual predictor, had a significant impact on predicting IINmH. Among ML methods, the XGBoost classifier outperformed other classifiers in predicting the IINmH, which was then used to perform sensitivity analysis to determine the relevance of features. We expect this multi-method analytical approach to make a significant contribution to the mHealth domain as well as the broad information systems literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ling发布了新的文献求助10
刚刚
jhw完成签到 ,获得积分10
2秒前
TRACEY完成签到,获得积分10
3秒前
3秒前
今后应助咋咋采纳,获得10
4秒前
4秒前
shiqi完成签到,获得积分10
5秒前
超级的鞅发布了新的文献求助10
5秒前
yutos完成签到,获得积分20
6秒前
6秒前
Hello应助整个der采纳,获得10
7秒前
8秒前
可爱妹发布了新的文献求助10
9秒前
冉遗应助ll采纳,获得10
9秒前
调皮傲旋发布了新的文献求助30
9秒前
Suc发布了新的文献求助10
10秒前
四号花店发布了新的文献求助10
11秒前
11秒前
11秒前
传奇3应助lei采纳,获得10
14秒前
14秒前
15秒前
传奇3应助超级的鞅采纳,获得10
15秒前
香风智乃完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
mi完成签到,获得积分10
17秒前
hancyzhang完成签到 ,获得积分10
18秒前
18秒前
18秒前
18秒前
汉堡包应助shi hui采纳,获得10
19秒前
19秒前
BowieHuang发布了新的文献求助30
21秒前
21秒前
NorthWang完成签到,获得积分10
21秒前
雪生在无人荒野完成签到,获得积分10
22秒前
羊羊羊应助HanyuJing采纳,获得10
22秒前
整个der发布了新的文献求助10
22秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215340
求助须知:如何正确求助?哪些是违规求助? 4390475
关于积分的说明 13670085
捐赠科研通 4252359
什么是DOI,文献DOI怎么找? 2333057
邀请新用户注册赠送积分活动 1330667
关于科研通互助平台的介绍 1284488