Convolutional networks for the segmentation of intravascular ultrasound images: Evaluation on a multicenter dataset

分割 血管内超声 人工智能 计算机科学 豪斯多夫距离 雅卡索引 模式识别(心理学) 计算机视觉 管腔(解剖学) 医学 放射科 外科
作者
Haiyan Du,Ling Li,Wenyan Yu,Peng Wu,Yuan Yang,Miao Chu,Jian Yang,Wei Yang,Shengxian Tu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:215: 106599-106599 被引量:16
标识
DOI:10.1016/j.cmpb.2021.106599
摘要

The delineation of the lumen contour and external elastic lamina (EEL) in intravascular ultrasound (IVUS) images is crucial for the quantitative analysis of coronary atherosclerotic plaques. However, the presence of ultrasonic shadows and anatomical structures (such as bifurcations and calcified plaque) complicates the automatic delineation of the lumen contour and EEL. The purpose of this paper is to evaluate the IVUS segmentation performances of different convolutional networks and the impact factors on a large-scale multiple-center dataset.A total of 6516 cross-sectional images from 175 IVUS pullbacks acquired in different centers by different IVUS imaging catheters were screened from a corelab to evaluate the segmentation methods. The IVUS images included bifurcation, side branch ostia, and various image artifacts to reflect the general image characteristics in routine clinical acquisition. We compared three generic fully convolutional networks (FCNs) and two FCNs specifically designed for the segmentation of IVUS images and explored the factors impacting the segmentation performance, including the training images and the input of consecutive images to the models. The performance of the FCNs was evaluated by using the Dice similarity coefficient (DSC), the Jaccard index (JI), the Hausdorff distance (HD), linear regression and Bland-Altman analysis.The 4-cascaded RefineNet and DeepLabv3+ outperformed U-net and IVUS-net in the segmentation of the lumen contour and EEL on IVUS images. DeepLabv3+ had the best segmentation performance, with DSCs of 0.927 and 0.944, JIs of 0.911 and 0.933, and HDs of 0.336 mm and 0.367 mm for delineation of the lumen and EEL, respectively. Excellent agreement between DeepLabv3+ and the manual delineation was found in the quantification of the coronary plaque area (r = 0.98).The convolutional network architecture is effective in the automatic segmentation of IVUS images. It might contribute to the clinical application of quantitative IVUS analysis in real-world as well as the efficient assessment of coronary atherosclerosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pi完成签到 ,获得积分20
刚刚
发嗲的忆寒完成签到,获得积分10
刚刚
爆米花应助通~采纳,获得10
刚刚
333完成签到 ,获得积分10
1秒前
MES完成签到,获得积分10
1秒前
糊弄学专家完成签到,获得积分10
1秒前
852应助ccyrichard采纳,获得10
2秒前
2秒前
2秒前
噜噜噜噜噜完成签到,获得积分10
3秒前
leez完成签到,获得积分10
3秒前
hohokuz发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
赘婿应助mrmrer采纳,获得10
5秒前
5秒前
赘婿应助三九采纳,获得10
5秒前
6秒前
6秒前
GEeZiii发布了新的文献求助10
6秒前
6秒前
7777777发布了新的文献求助10
6秒前
研友_nv2r4n发布了新的文献求助10
6秒前
Bman完成签到,获得积分10
7秒前
sakurai应助愤怒的寄琴采纳,获得10
7秒前
迟大猫应助简单的银耳汤采纳,获得10
7秒前
Owen应助LJL采纳,获得10
7秒前
8秒前
cwn完成签到,获得积分10
8秒前
zhuzhu完成签到,获得积分0
8秒前
丘比特应助彩色的蓝天采纳,获得10
8秒前
ChoccyPasta完成签到,获得积分10
9秒前
9秒前
感动的冬云完成签到,获得积分10
9秒前
嘤嘤嘤发布了新的文献求助10
10秒前
wuhaixia完成签到,获得积分10
10秒前
正版DY完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794