Convolutional networks for the segmentation of intravascular ultrasound images: Evaluation on a multicenter dataset

分割 血管内超声 人工智能 计算机科学 豪斯多夫距离 雅卡索引 模式识别(心理学) 计算机视觉 管腔(解剖学) 医学 放射科 外科
作者
Haiyan Du,Li Ling,Wei Yu,Peng Wu,Yuan Yang,Miao Chu,Junqing Yang,Wei Yang,Shengxian Tu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:215: 106599-106599 被引量:23
标识
DOI:10.1016/j.cmpb.2021.106599
摘要

The delineation of the lumen contour and external elastic lamina (EEL) in intravascular ultrasound (IVUS) images is crucial for the quantitative analysis of coronary atherosclerotic plaques. However, the presence of ultrasonic shadows and anatomical structures (such as bifurcations and calcified plaque) complicates the automatic delineation of the lumen contour and EEL. The purpose of this paper is to evaluate the IVUS segmentation performances of different convolutional networks and the impact factors on a large-scale multiple-center dataset.A total of 6516 cross-sectional images from 175 IVUS pullbacks acquired in different centers by different IVUS imaging catheters were screened from a corelab to evaluate the segmentation methods. The IVUS images included bifurcation, side branch ostia, and various image artifacts to reflect the general image characteristics in routine clinical acquisition. We compared three generic fully convolutional networks (FCNs) and two FCNs specifically designed for the segmentation of IVUS images and explored the factors impacting the segmentation performance, including the training images and the input of consecutive images to the models. The performance of the FCNs was evaluated by using the Dice similarity coefficient (DSC), the Jaccard index (JI), the Hausdorff distance (HD), linear regression and Bland-Altman analysis.The 4-cascaded RefineNet and DeepLabv3+ outperformed U-net and IVUS-net in the segmentation of the lumen contour and EEL on IVUS images. DeepLabv3+ had the best segmentation performance, with DSCs of 0.927 and 0.944, JIs of 0.911 and 0.933, and HDs of 0.336 mm and 0.367 mm for delineation of the lumen and EEL, respectively. Excellent agreement between DeepLabv3+ and the manual delineation was found in the quantification of the coronary plaque area (r = 0.98).The convolutional network architecture is effective in the automatic segmentation of IVUS images. It might contribute to the clinical application of quantitative IVUS analysis in real-world as well as the efficient assessment of coronary atherosclerosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万物安生完成签到,获得积分10
刚刚
yyyyyy完成签到,获得积分10
1秒前
1秒前
whoami完成签到,获得积分10
1秒前
3秒前
十八楼完成签到,获得积分10
3秒前
3秒前
3秒前
LBX应助沐浴阳光的橙子采纳,获得50
4秒前
huangxiaoniu完成签到,获得积分10
5秒前
早早干饭应助赖道之采纳,获得10
5秒前
5秒前
zhanzhanzhan完成签到,获得积分10
6秒前
mojinzhao完成签到,获得积分10
6秒前
文艺的芫发布了新的文献求助10
7秒前
咩咩羊发布了新的文献求助10
7秒前
Altria完成签到,获得积分10
7秒前
天天快乐应助谦让不二采纳,获得10
7秒前
五虎完成签到,获得积分10
7秒前
坦率的海豚完成签到,获得积分10
7秒前
slby发布了新的文献求助10
8秒前
Rain1god发布了新的文献求助10
8秒前
辛勤香岚完成签到,获得积分10
8秒前
英姑应助ivysci00采纳,获得10
9秒前
CipherSage应助哦豁采纳,获得10
9秒前
10秒前
感动城发布了新的文献求助10
10秒前
qqqqqqy应助冰魄落叶采纳,获得10
11秒前
11秒前
栗子鱼发布了新的文献求助10
11秒前
科研小白完成签到,获得积分10
12秒前
笑点低诗桃完成签到,获得积分20
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
淡淡乐巧完成签到 ,获得积分10
13秒前
14秒前
甜美无剑应助清浅采纳,获得20
14秒前
yixing发布了新的文献求助10
14秒前
skskysky完成签到,获得积分10
14秒前
小包包发布了新的文献求助10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960479
求助须知:如何正确求助?哪些是违规求助? 3506634
关于积分的说明 11131585
捐赠科研通 3238880
什么是DOI,文献DOI怎么找? 1789914
邀请新用户注册赠送积分活动 872039
科研通“疑难数据库(出版商)”最低求助积分说明 803124