医学
神经病理性疼痛
脑岛
白质
神经影像学
神经科学
磁共振弥散成像
糖尿病神经病变
糖尿病
中间性中心性
扁桃形结构
内科学
中心性
精神科
麻醉
磁共振成像
内分泌学
心理学
数学
组合数学
放射科
作者
Chi‐Chao Chao,Paul-Chen Hsieh,Chien-Ho Janice Lin,Shin‐Leh Huang,Sung‐Tsang Hsieh,Ming‐Chang Chiang
标识
DOI:10.1016/j.diabres.2022.109833
摘要
To investigate alterations in structural brain networks due to chronic diabetic neuropathic pain.The current study recruited 24 patients with painful diabetic neuropathy (PDN) to investigate the influences of chronic pain on the brain. Thirteen patients with painless diabetic neuropathy (PLDN) and 24 healthy adults were recruited as disease and healthy controls. White matter connectivity of the brain networks constructed by diffusion tractography was compared across groups using the Network-based statistic (NBS) method. Graph theoretical analysis was further applied to assess topological changes of the brain networks.The PDN patients had a significant reduction in white matter connectivity compared with PLDN and controls in the limbic and temporal regions, particularly the insula, hippocampus and parahippocampus, the amygdala, and the middle temporal gyrus. The PDN patients also exhibited an altered topology of the brain networks with reduced global efficiency and betweenness centrality.The current findings indicate that topological alterations of brain networks may serve as a biomarker for pain-induced maladaptive reorganization of the brain in PDN. Given the high prevalence of diabetes worldwide, novel insights from network sciences to investigate the central mechanisms of diabetic neuropathic pain are warranted.
科研通智能强力驱动
Strongly Powered by AbleSci AI