Deep neural network algorithm for MPPT control of double diode equation based PV module

粒子群优化 算法 光伏系统 人工神经网络 最大功率点跟踪 软计算 计算机科学 最大功率原理 功率(物理) 人工智能 工程类 逆变器 量子力学 电气工程 物理
作者
M. Leelavathi,Vishal Kumar
出处
期刊:Materials Today: Proceedings [Elsevier]
卷期号:62: 4764-4771 被引量:1
标识
DOI:10.1016/j.matpr.2022.03.340
摘要

One of the most promising renewable energy sources (RES) is photovoltaic energy system. It generates power by using a photovoltaic (PV) module. The solar illumination and temperature value are the main parameters for the PV module because a small change can affect the entire power generation. The PV module is based on the double diode equation for extracting unknown parameter values and tracking maximum power point using basic analytical methods (Newton Raphson and Lambert W-function), particle swarm optimization (PSO) and artificial neural network (ANN) algorithms are performed. Then, a deep neural network (DNN) algorithm is proposed in this work for alleviating the disadvantages of the existing methods. Particularly, the DNN algorithm is proposed for reducing the mismatching power loss. Firstly, two-parameter values retrieve from a specific location at NASA open-access source for the year 2020. Then, the parameter values optimization through two analytical methods such as Newton Raphson (NR) and Lambert-W function (W-function) methods. Based on these analytical methods, the characteristic curve is executed. It is compared one among one and also the analytical methods evaluates with soft computing algorithms. The soft computing algorithm represents particle swarm optimization and the artificial neural network. Both the analytical methods and the soft computing algorithms compare for the extraction of the unknown parameter value for the PV module. Then, the existing algorithm is compared with advanced soft computing algorithms. In that deep neural network, the algorithm is implemented for the maximum power point tracking (MPPT) process. The DNN algorithm contains two inputs, three hidden layers and one output. The input neuron is defined with the voltage and current value and the hidden layer contains the sigmoid activation function. The result evaluates in terms of percentage of error for maximum power point (PEmpp).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxh完成签到,获得积分10
刚刚
舒服的幻梅完成签到,获得积分10
2秒前
3秒前
aabbcc发布了新的文献求助10
4秒前
英俊的铭应助张雯思采纳,获得10
6秒前
脑洞疼应助张雯思采纳,获得10
6秒前
隐形曼青应助张雯思采纳,获得10
6秒前
搜集达人应助张雯思采纳,获得10
6秒前
深情安青应助张雯思采纳,获得10
6秒前
思源应助张雯思采纳,获得10
6秒前
华仔应助张雯思采纳,获得10
7秒前
上官若男应助张雯思采纳,获得30
7秒前
YamDaamCaa应助张雯思采纳,获得30
7秒前
马康辉应助张雯思采纳,获得10
7秒前
7秒前
鱼啵啵发布了新的文献求助10
8秒前
JamesPei应助浮云采纳,获得10
10秒前
蝌蚪发布了新的文献求助10
10秒前
李爱国应助yuebaoji采纳,获得10
13秒前
13秒前
呵呵完成签到,获得积分10
15秒前
言西完成签到,获得积分10
16秒前
EuitNeck完成签到,获得积分10
17秒前
17秒前
星辰大海应助蝌蚪采纳,获得10
18秒前
Zhou完成签到,获得积分10
18秒前
18秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
思源应助无情的水蓉采纳,获得30
19秒前
20秒前
21秒前
21秒前
EuitNeck发布了新的文献求助20
22秒前
乌梅不乌发布了新的文献求助10
22秒前
旋转的龙发布了新的文献求助10
23秒前
浮云发布了新的文献求助10
23秒前
明理依云发布了新的文献求助10
24秒前
lzj发布了新的文献求助10
25秒前
yuebaoji发布了新的文献求助10
26秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979628
求助须知:如何正确求助?哪些是违规求助? 3523569
关于积分的说明 11218108
捐赠科研通 3261093
什么是DOI,文献DOI怎么找? 1800402
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807163