The efficacy of 18F-FDG-PET-based radiomic and deep-learning features using a machine-learning approach to predict the pathological risk subtypes of thymic epithelial tumors

医学 逻辑回归 胸腺瘤 正电子发射断层摄影术 胸腺癌 接收机工作特性 核医学 肿瘤科 机器学习 内科学 病理 计算机科学
作者
Masatoyo Nakajo,Aya Takeda,Akie Katsuki,Megumi Jinguji,Kazuyuki Ohmura,Alessia Tani,Masami Sato,Takashi Yamada
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:95 (1134) 被引量:8
标识
DOI:10.1259/bjr.20211050
摘要

Objective: To examine whether the machine-learning approach using 18-fludeoxyglucose positron emission tomography ( 18 F-FDG-PET)-based radiomic and deep-learning features is useful for predicting the pathological risk subtypes of thymic epithelial tumors (TETs). Methods: This retrospective study included 79 TET [27 low-risk thymomas (types A, AB and B1), 31 high-risk thymomas (types B2 and B3) and 21 thymic carcinomas] patients who underwent pre-therapeutic 18 F-FDG-PET/CT. High-risk TETs (high-risk thymomas and thymic carcinomas) were 52 patients. The 107 PET-based radiomic features, including SUV-related parameters [maximum SUV (SUV max ), metabolic tumor volume (MTV), and total lesion glycolysis (TLG)] and 1024 deep-learning features extracted from the convolutional neural network were used to predict the pathological risk subtypes of TETs using six different machine-learning algorithms. The area under the curves (AUCs) were calculated to compare the predictive performances. Results: SUV-related parameters yielded the following AUCs for predicting thymic carcinomas: SUVmax 0.713, MTV 0.442, and TLG 0.479 or high-risk TETs: SUVmax 0.673, MTV 0.533, and TLG 0.539. The best-performing algorithm was the logistic regression model for predicting thymic carcinomas (AUC 0.900, accuracy 81.0%), and the random forest (RF) model for high-risk TETs (AUC 0.744, accuracy 72.2%). The AUC was significantly higher in the logistic regression model than three SUV-related parameters for predicting thymic carcinomas, and in the RF model than MTV and TLG for predicting high-risk TETs (each; p < 0.05). Conclusion: 18 F-FDG-PET-based radiomic analysis using a machine-learning approach may be useful for predicting the pathological risk subtypes of TETs. Advances in knowledge: Machine-learning approach using 18 F-FDG-PET-based radiomic features has the potential to predict the pathological risk subtypes of TETs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助苹果煎饼采纳,获得10
1秒前
神奇的呃发布了新的文献求助10
1秒前
2秒前
2秒前
hsing完成签到,获得积分10
2秒前
秦秦发布了新的文献求助10
3秒前
明天又是美好的一天完成签到 ,获得积分10
3秒前
我是老大应助Ukiss采纳,获得10
3秒前
4秒前
5秒前
JamesPei应助阴天的向日葵采纳,获得10
6秒前
ABB完成签到,获得积分10
6秒前
晓先生发布了新的文献求助10
7秒前
斯文败类应助kmoonkkk采纳,获得10
7秒前
小畅发布了新的文献求助10
7秒前
7秒前
Age完成签到,获得积分10
7秒前
7秒前
ruqinmq发布了新的文献求助10
8秒前
8秒前
9秒前
fay发布了新的文献求助10
9秒前
9秒前
jellyfishnerve发布了新的文献求助100
10秒前
10秒前
自觉平露完成签到,获得积分10
10秒前
11秒前
SciGPT应助hjy采纳,获得10
11秒前
辣椒蘸糖发布了新的文献求助10
12秒前
虚心青亦完成签到,获得积分10
12秒前
12秒前
gao发布了新的文献求助10
13秒前
14秒前
美丽中道发布了新的文献求助10
14秒前
15秒前
慕青应助han采纳,获得10
15秒前
壮壮不爱吃肉完成签到,获得积分10
15秒前
安南应助秦秦采纳,获得10
16秒前
BioGO发布了新的文献求助10
16秒前
易安发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409732
求助须知:如何正确求助?哪些是违规求助? 4527293
关于积分的说明 14110056
捐赠科研通 4441780
什么是DOI,文献DOI怎么找? 2437589
邀请新用户注册赠送积分活动 1429594
关于科研通互助平台的介绍 1407723