亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The efficacy of 18F-FDG-PET-based radiomic and deep-learning features using a machine-learning approach to predict the pathological risk subtypes of thymic epithelial tumors

医学 逻辑回归 胸腺瘤 正电子发射断层摄影术 胸腺癌 接收机工作特性 核医学 肿瘤科 机器学习 内科学 病理 计算机科学
作者
Masatoyo Nakajo,Aya Takeda,Akie Katsuki,Megumi Jinguji,Kazuyuki Ohmura,Alessia Tani,Masami Sato,Takashi Yamada
出处
期刊:British Journal of Radiology [Wiley]
卷期号:95 (1134) 被引量:8
标识
DOI:10.1259/bjr.20211050
摘要

Objective: To examine whether the machine-learning approach using 18-fludeoxyglucose positron emission tomography ( 18 F-FDG-PET)-based radiomic and deep-learning features is useful for predicting the pathological risk subtypes of thymic epithelial tumors (TETs). Methods: This retrospective study included 79 TET [27 low-risk thymomas (types A, AB and B1), 31 high-risk thymomas (types B2 and B3) and 21 thymic carcinomas] patients who underwent pre-therapeutic 18 F-FDG-PET/CT. High-risk TETs (high-risk thymomas and thymic carcinomas) were 52 patients. The 107 PET-based radiomic features, including SUV-related parameters [maximum SUV (SUV max ), metabolic tumor volume (MTV), and total lesion glycolysis (TLG)] and 1024 deep-learning features extracted from the convolutional neural network were used to predict the pathological risk subtypes of TETs using six different machine-learning algorithms. The area under the curves (AUCs) were calculated to compare the predictive performances. Results: SUV-related parameters yielded the following AUCs for predicting thymic carcinomas: SUVmax 0.713, MTV 0.442, and TLG 0.479 or high-risk TETs: SUVmax 0.673, MTV 0.533, and TLG 0.539. The best-performing algorithm was the logistic regression model for predicting thymic carcinomas (AUC 0.900, accuracy 81.0%), and the random forest (RF) model for high-risk TETs (AUC 0.744, accuracy 72.2%). The AUC was significantly higher in the logistic regression model than three SUV-related parameters for predicting thymic carcinomas, and in the RF model than MTV and TLG for predicting high-risk TETs (each; p < 0.05). Conclusion: 18 F-FDG-PET-based radiomic analysis using a machine-learning approach may be useful for predicting the pathological risk subtypes of TETs. Advances in knowledge: Machine-learning approach using 18 F-FDG-PET-based radiomic features has the potential to predict the pathological risk subtypes of TETs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
15秒前
17秒前
DPmmm发布了新的文献求助10
21秒前
33秒前
现实的俊驰完成签到 ,获得积分10
37秒前
Akim应助Frank采纳,获得10
1分钟前
2分钟前
再给我来点抽象的应助Jim采纳,获得10
3分钟前
科研通AI5应助榆果子采纳,获得10
3分钟前
fufufu123完成签到 ,获得积分10
3分钟前
孙孙应助Jim采纳,获得30
4分钟前
充电宝应助EliotFang采纳,获得10
4分钟前
4分钟前
陈杰发布了新的文献求助10
5分钟前
kuoping完成签到,获得积分0
5分钟前
彭于晏应助科研通管家采纳,获得10
5分钟前
nickel完成签到,获得积分10
6分钟前
6分钟前
EliotFang发布了新的文献求助10
6分钟前
沉沉完成签到 ,获得积分0
6分钟前
7分钟前
7分钟前
Frank发布了新的文献求助10
7分钟前
oleskarabach发布了新的文献求助10
7分钟前
EliotFang完成签到,获得积分10
7分钟前
fsznc完成签到 ,获得积分0
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
oleskarabach发布了新的文献求助10
8分钟前
CipherSage应助科研通管家采纳,获得10
9分钟前
开心完成签到 ,获得积分10
9分钟前
9分钟前
顾矜应助zsc采纳,获得10
9分钟前
榆果子发布了新的文献求助10
10分钟前
榆果子完成签到,获得积分10
10分钟前
我是笨蛋完成签到 ,获得积分10
10分钟前
10分钟前
10分钟前
荆棘鸟发布了新的文献求助10
10分钟前
正传阿飞完成签到,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582372
求助须知:如何正确求助?哪些是违规求助? 4000106
关于积分的说明 12382171
捐赠科研通 3675045
什么是DOI,文献DOI怎么找? 2025670
邀请新用户注册赠送积分活动 1059319
科研通“疑难数据库(出版商)”最低求助积分说明 945976