The efficacy of 18F-FDG-PET-based radiomic and deep-learning features using a machine-learning approach to predict the pathological risk subtypes of thymic epithelial tumors

医学 逻辑回归 胸腺瘤 正电子发射断层摄影术 胸腺癌 接收机工作特性 核医学 肿瘤科 机器学习 内科学 病理 计算机科学
作者
Masatoyo Nakajo,Aya Takeda,Akie Katsuki,Megumi Jinguji,Kazuyuki Ohmura,Alessia Tani,Masami Sato,Takashi Yamada
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:95 (1134) 被引量:8
标识
DOI:10.1259/bjr.20211050
摘要

Objective: To examine whether the machine-learning approach using 18-fludeoxyglucose positron emission tomography ( 18 F-FDG-PET)-based radiomic and deep-learning features is useful for predicting the pathological risk subtypes of thymic epithelial tumors (TETs). Methods: This retrospective study included 79 TET [27 low-risk thymomas (types A, AB and B1), 31 high-risk thymomas (types B2 and B3) and 21 thymic carcinomas] patients who underwent pre-therapeutic 18 F-FDG-PET/CT. High-risk TETs (high-risk thymomas and thymic carcinomas) were 52 patients. The 107 PET-based radiomic features, including SUV-related parameters [maximum SUV (SUV max ), metabolic tumor volume (MTV), and total lesion glycolysis (TLG)] and 1024 deep-learning features extracted from the convolutional neural network were used to predict the pathological risk subtypes of TETs using six different machine-learning algorithms. The area under the curves (AUCs) were calculated to compare the predictive performances. Results: SUV-related parameters yielded the following AUCs for predicting thymic carcinomas: SUVmax 0.713, MTV 0.442, and TLG 0.479 or high-risk TETs: SUVmax 0.673, MTV 0.533, and TLG 0.539. The best-performing algorithm was the logistic regression model for predicting thymic carcinomas (AUC 0.900, accuracy 81.0%), and the random forest (RF) model for high-risk TETs (AUC 0.744, accuracy 72.2%). The AUC was significantly higher in the logistic regression model than three SUV-related parameters for predicting thymic carcinomas, and in the RF model than MTV and TLG for predicting high-risk TETs (each; p < 0.05). Conclusion: 18 F-FDG-PET-based radiomic analysis using a machine-learning approach may be useful for predicting the pathological risk subtypes of TETs. Advances in knowledge: Machine-learning approach using 18 F-FDG-PET-based radiomic features has the potential to predict the pathological risk subtypes of TETs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助科研通管家采纳,获得10
刚刚
蜘猪侠zx应助科研通管家采纳,获得10
刚刚
Akim应助娄十三采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
打打应助科研通管家采纳,获得10
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
1秒前
明亮小馒头完成签到,获得积分10
1秒前
猴王完成签到,获得积分10
2秒前
天天摸鱼完成签到,获得积分10
3秒前
青丘提案完成签到,获得积分10
3秒前
4秒前
苗苗完成签到,获得积分10
4秒前
英俊的铭应助congcong采纳,获得10
4秒前
睡不醒的喵完成签到,获得积分10
4秒前
5秒前
不入完成签到,获得积分10
5秒前
6秒前
6秒前
研友_方达完成签到,获得积分10
8秒前
8秒前
猫南北完成签到,获得积分10
8秒前
CodeCraft应助青丘提案采纳,获得10
9秒前
ljy完成签到,获得积分10
9秒前
。。。发布了新的文献求助10
10秒前
11秒前
mp5完成签到,获得积分10
13秒前
Zuya发布了新的文献求助10
14秒前
Surly完成签到,获得积分10
14秒前
大团长完成签到,获得积分10
15秒前
chenc发布了新的文献求助30
16秒前
小杭76应助长情的雅绿采纳,获得10
17秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379192
求助须知:如何正确求助?哪些是违规求助? 4503605
关于积分的说明 14016048
捐赠科研通 4412336
什么是DOI,文献DOI怎么找? 2423761
邀请新用户注册赠送积分活动 1416652
关于科研通互助平台的介绍 1394188