Deep learning techniques to classify agricultural crops through UAV imagery: a review

计算机科学 深度学习 卷积神经网络 人工智能 精准农业 机器学习 过程(计算) 农业 上下文图像分类 图像(数学) 生态学 生物 操作系统
作者
Abdelmalek Bouguettaya,Hafed Zarzour,Ahmed Kechida,Amine Mohammed Taberkit
出处
期刊:Neural Computing and Applications [Springer Nature]
卷期号:34 (12): 9511-9536 被引量:250
标识
DOI:10.1007/s00521-022-07104-9
摘要

During the last few years, Unmanned Aerial Vehicles (UAVs) technologies are widely used to improve agriculture productivity while reducing drudgery, inspection time, and crop management cost. Moreover, they are able to cover large areas in a matter of a few minutes. Due to the impressive technological advancement, UAV-based remote sensing technologies are increasingly used to collect valuable data that could be used to achieve many precision agriculture applications, including crop/plant classification. In order to process these data accurately, we need powerful tools and algorithms such as Deep Learning approaches. Recently, Convolutional Neural Network (CNN) has emerged as a powerful tool for image processing tasks achieving remarkable results making it the state-of-the-art technique for vision applications. In the present study, we reviewed the recent CNN-based methods applied to the UAV-based remote sensing image analysis for crop/plant classification to help researchers and farmers to decide what algorithms they should use accordingly to their studied crops and the used hardware. Fusing different UAV-based data and deep learning approaches have emerged as a powerful tool to classify different crop types accurately. The readers of the present review could acquire the most challenging issues facing researchers to classify different crop types from UAV imagery and their potential solutions to improve the performance of deep learning-based algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
科研通AI6应助滟滟采纳,获得20
1秒前
在水一方应助小黑采纳,获得10
1秒前
2秒前
金鱼发布了新的文献求助10
2秒前
3秒前
猪猪侠应助正在加载中采纳,获得10
4秒前
4秒前
康明雪发布了新的文献求助10
4秒前
高高的起眸完成签到,获得积分10
4秒前
眼睛大的寄真完成签到,获得积分10
5秒前
宙船完成签到,获得积分20
5秒前
keyanniniz发布了新的文献求助10
6秒前
warithy完成签到,获得积分10
6秒前
lcpppppp发布了新的文献求助10
6秒前
今后应助白日做梦采纳,获得10
7秒前
7秒前
chd发布了新的文献求助30
8秒前
xinxin0902发布了新的文献求助10
8秒前
8秒前
AAAsun完成签到,获得积分10
8秒前
小蘑菇应助土豆丝上将采纳,获得30
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
轩儿轩完成签到 ,获得积分10
11秒前
友好的芷雪完成签到,获得积分10
11秒前
LL发布了新的文献求助10
11秒前
12秒前
YH完成签到,获得积分10
13秒前
SOBER发布了新的文献求助10
13秒前
14秒前
傲娇绿蕊发布了新的文献求助10
14秒前
顾矜应助Reborn采纳,获得10
14秒前
上官若男应助lcpppppp采纳,获得10
17秒前
核桃发布了新的文献求助10
17秒前
221发布了新的文献求助10
17秒前
失眠的冬易完成签到 ,获得积分10
17秒前
drew完成签到 ,获得积分10
18秒前
dreamode完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666928
求助须知:如何正确求助?哪些是违规求助? 4883518
关于积分的说明 15118330
捐赠科研通 4825864
什么是DOI,文献DOI怎么找? 2583597
邀请新用户注册赠送积分活动 1537760
关于科研通互助平台的介绍 1495956