Deep learning techniques to classify agricultural crops through UAV imagery: a review

计算机科学 深度学习 卷积神经网络 人工智能 精准农业 机器学习 过程(计算) 农业 上下文图像分类 图像(数学) 生态学 生物 操作系统
作者
Abdelmalek Bouguettaya,Hafed Zarzour,Ahmed Kechida,Amine Mohammed Taberkit
出处
期刊:Neural Computing and Applications [Springer Nature]
卷期号:34 (12): 9511-9536 被引量:56
标识
DOI:10.1007/s00521-022-07104-9
摘要

During the last few years, Unmanned Aerial Vehicles (UAVs) technologies are widely used to improve agriculture productivity while reducing drudgery, inspection time, and crop management cost. Moreover, they are able to cover large areas in a matter of a few minutes. Due to the impressive technological advancement, UAV-based remote sensing technologies are increasingly used to collect valuable data that could be used to achieve many precision agriculture applications, including crop/plant classification. In order to process these data accurately, we need powerful tools and algorithms such as Deep Learning approaches. Recently, Convolutional Neural Network (CNN) has emerged as a powerful tool for image processing tasks achieving remarkable results making it the state-of-the-art technique for vision applications. In the present study, we reviewed the recent CNN-based methods applied to the UAV-based remote sensing image analysis for crop/plant classification to help researchers and farmers to decide what algorithms they should use accordingly to their studied crops and the used hardware. Fusing different UAV-based data and deep learning approaches have emerged as a powerful tool to classify different crop types accurately. The readers of the present review could acquire the most challenging issues facing researchers to classify different crop types from UAV imagery and their potential solutions to improve the performance of deep learning-based algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光亮天抒发布了新的文献求助10
刚刚
刚刚
汉堡包应助MMMX采纳,获得10
刚刚
彭于晏应助震动的化蛹采纳,获得10
3秒前
Mess完成签到,获得积分10
3秒前
热情的人杰完成签到,获得积分10
4秒前
4秒前
whf完成签到,获得积分10
5秒前
蒲sir完成签到,获得积分20
5秒前
吴建文完成签到 ,获得积分10
5秒前
ananan完成签到,获得积分10
5秒前
孙某人发布了新的文献求助10
5秒前
华仔应助HhhhL采纳,获得10
5秒前
HF完成签到,获得积分10
5秒前
6秒前
小波发布了新的文献求助10
6秒前
Pony完成签到,获得积分10
6秒前
7秒前
Wangsir完成签到,获得积分10
8秒前
8秒前
111发布了新的文献求助10
9秒前
嘟嘟金子发布了新的文献求助10
10秒前
传奇3应助德尔塔捱斯采纳,获得10
12秒前
江河JT完成签到 ,获得积分10
12秒前
12秒前
12秒前
冉冉发布了新的文献求助10
12秒前
M橘子完成签到,获得积分10
12秒前
传奇3应助无限的雨梅采纳,获得10
12秒前
13秒前
兰兰从1982完成签到,获得积分10
14秒前
LL完成签到 ,获得积分10
15秒前
酷波er应助TingWan采纳,获得10
15秒前
余进步完成签到,获得积分20
15秒前
不配.应助追寻的靖雁采纳,获得20
15秒前
one完成签到 ,获得积分10
16秒前
lsl发布了新的文献求助10
17秒前
17秒前
unyoah完成签到,获得积分10
18秒前
hongjie_w发布了新的文献求助10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135616
求助须知:如何正确求助?哪些是违规求助? 2786482
关于积分的说明 7777675
捐赠科研通 2442483
什么是DOI,文献DOI怎么找? 1298583
科研通“疑难数据库(出版商)”最低求助积分说明 625193
版权声明 600847