已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning techniques to classify agricultural crops through UAV imagery: a review

计算机科学 深度学习 卷积神经网络 人工智能 精准农业 机器学习 过程(计算) 农业 上下文图像分类 图像(数学) 生态学 生物 操作系统
作者
Abdelmalek Bouguettaya,Hafed Zarzour,Ahmed Kechida,Amine Mohammed Taberkit
出处
期刊:Neural Computing and Applications [Springer Science+Business Media]
卷期号:34 (12): 9511-9536 被引量:56
标识
DOI:10.1007/s00521-022-07104-9
摘要

During the last few years, Unmanned Aerial Vehicles (UAVs) technologies are widely used to improve agriculture productivity while reducing drudgery, inspection time, and crop management cost. Moreover, they are able to cover large areas in a matter of a few minutes. Due to the impressive technological advancement, UAV-based remote sensing technologies are increasingly used to collect valuable data that could be used to achieve many precision agriculture applications, including crop/plant classification. In order to process these data accurately, we need powerful tools and algorithms such as Deep Learning approaches. Recently, Convolutional Neural Network (CNN) has emerged as a powerful tool for image processing tasks achieving remarkable results making it the state-of-the-art technique for vision applications. In the present study, we reviewed the recent CNN-based methods applied to the UAV-based remote sensing image analysis for crop/plant classification to help researchers and farmers to decide what algorithms they should use accordingly to their studied crops and the used hardware. Fusing different UAV-based data and deep learning approaches have emerged as a powerful tool to classify different crop types accurately. The readers of the present review could acquire the most challenging issues facing researchers to classify different crop types from UAV imagery and their potential solutions to improve the performance of deep learning-based algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
genius完成签到,获得积分10
1秒前
Leif完成签到 ,获得积分0
1秒前
hjc完成签到,获得积分10
4秒前
4秒前
自觉汽车完成签到,获得积分10
6秒前
8秒前
wanci应助Augustines采纳,获得10
12秒前
学霸宇大王完成签到,获得积分10
13秒前
勤奋帅帅完成签到,获得积分10
17秒前
薛定谔的猫完成签到,获得积分10
25秒前
btmy16完成签到,获得积分20
25秒前
27秒前
ff发布了新的文献求助10
30秒前
聆琳完成签到 ,获得积分10
30秒前
lsh发布了新的文献求助10
31秒前
俭朴蜜蜂完成签到 ,获得积分10
34秒前
上官若男应助btmy16采纳,获得10
35秒前
香蕉觅云应助快乐的易巧采纳,获得10
37秒前
纭声完成签到 ,获得积分10
37秒前
牛乃唐完成签到 ,获得积分10
42秒前
44秒前
傲娇的棉花糖完成签到 ,获得积分10
44秒前
伟川周完成签到 ,获得积分10
44秒前
何hyy完成签到,获得积分10
45秒前
香山叶正红完成签到 ,获得积分10
46秒前
abandon发布了新的文献求助10
50秒前
荷兰香猪完成签到,获得积分10
50秒前
涵涵涵hh完成签到 ,获得积分10
53秒前
七号在野闪闪完成签到 ,获得积分10
53秒前
57秒前
1分钟前
Zr发布了新的文献求助10
1分钟前
1分钟前
GingerF应助科研通管家采纳,获得50
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
GingerF应助科研通管家采纳,获得50
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5136626
求助须知:如何正确求助?哪些是违规求助? 4336724
关于积分的说明 13510467
捐赠科研通 4174839
什么是DOI,文献DOI怎么找? 2289082
邀请新用户注册赠送积分活动 1289774
关于科研通互助平台的介绍 1231100