Numerical weather prediction enhanced wind power forecasting: Rank ensemble and probabilistic fluctuation awareness

数值天气预报 风电预测 概率逻辑 分拆(数论) 稳健性(进化) 集合预报 概率预测 气象学 数据同化 数学 计算机科学 算法 统计 电力系统 功率(物理) 地理 组合数学 物理 基因 量子力学 化学 生物化学
作者
Chenyu Liu,Xuemin Zhang,Shengwei Mei,Zhao Zhen,Mengshuo Jia,Zheng Li,Haiyan Tang
出处
期刊:Applied Energy [Elsevier]
卷期号:313: 118769-118769 被引量:42
标识
DOI:10.1016/j.apenergy.2022.118769
摘要

Numerical Weather Prediction (NWP) is the key to precise wind power forecasting (WPF), which can be enhanced by the NWP correction and scenario partition techniques. However, on the one hand, existing NWP correction techniques may enlarge the volatility of ensemble NWP which disturbs the subsequent WPF. On the other hand, existing scenario partition techniques cannot precisely predict wind power in fluctuating scenarios by assuming NWP is totally reliable. Therefore, this paper proposes a novel NWP enhanced WPF method based on rank ensemble and probabilistic fluctuation awareness. Firstly, Rank Bayesian Ensemble (RBE) method is intended based on the stationary NWP rank, which generates a stable and accurate ensemble NWP. Secondly, a fluctuation scenarios partition framework is devised to establish a fluctuation awareness model with NWP’s credibility quantified. The framework works in a three-step manner, including characterization, matching, and inference of wind fluctuation events: respectively as Fluctuation identification and feature embedding (FIGE), Fluctuating mapping algorithm (FMA), and Probabilistic fluctuation warning (PFW). Finally, we incorporate the two enhancement techniques in a forecasting method in the ultra-short-term. A real-world wind farm with four NWP sources data validates the superiority and robustness of the proposed WPF method. The result shows that our method can reduce the four hour-ahead rooted mean square error (RMSE) by 2.16%–4.36% compared to baseline models. Meanwhile, the stability of ensemble NWP and the effectiveness of fluctuation scenario partition are also discussed. • Proposed enhancement techniques improve NWP’s contribution to forecasting accuracy. • NWP rank describes the stable performance of multi-source NWP in typical weather. • Scenario partition effectively models and predicts the wind fluctuation events. • Fluctuation probability is inferred in each moment with NWP credibility quantified. • Superiority of the two NWP enhancement techniques is proved in the real-world case.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
彩色完成签到,获得积分10
1秒前
冷傲的以旋完成签到,获得积分10
2秒前
一直成长完成签到,获得积分10
2秒前
lym完成签到,获得积分10
3秒前
不舍天真完成签到,获得积分10
3秒前
nuanxiner完成签到,获得积分10
3秒前
3秒前
4秒前
戴衡霞发布了新的文献求助10
5秒前
safari完成签到 ,获得积分10
6秒前
沉静凡松完成签到 ,获得积分10
7秒前
星期五完成签到,获得积分10
7秒前
8秒前
ttt发布了新的文献求助10
10秒前
刻苦慕晴完成签到 ,获得积分10
10秒前
宇宙飞船2436完成签到,获得积分10
10秒前
kevin_kong完成签到,获得积分10
12秒前
清i晨完成签到,获得积分10
12秒前
Justtry完成签到,获得积分10
13秒前
13秒前
zmx123123完成签到,获得积分10
15秒前
cc完成签到 ,获得积分10
15秒前
111完成签到,获得积分10
15秒前
小马甲应助赵赵采纳,获得10
16秒前
lu完成签到,获得积分20
18秒前
18秒前
19秒前
大海完成签到,获得积分10
20秒前
缓慢煎蛋完成签到,获得积分10
21秒前
友好的冥王星完成签到,获得积分10
22秒前
不信人间有白头完成签到 ,获得积分10
23秒前
2316690509完成签到 ,获得积分10
23秒前
支雨泽完成签到,获得积分10
24秒前
Sun_1完成签到,获得积分10
24秒前
JeromineJade完成签到,获得积分10
24秒前
fyy完成签到 ,获得积分10
24秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
所所应助科研通管家采纳,获得10
25秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347662
求助须知:如何正确求助?哪些是违规求助? 4481921
关于积分的说明 13948277
捐赠科研通 4380282
什么是DOI,文献DOI怎么找? 2406879
邀请新用户注册赠送积分活动 1399456
关于科研通互助平台的介绍 1372631