亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Numerical weather prediction enhanced wind power forecasting: Rank ensemble and probabilistic fluctuation awareness

数值天气预报 风电预测 概率逻辑 分拆(数论) 稳健性(进化) 集合预报 概率预测 气象学 数据同化 数学 计算机科学 算法 统计 电力系统 功率(物理) 地理 生物化学 物理 化学 量子力学 组合数学 基因
作者
Chenyu Liu,Xuemin Zhang,Shengwei Mei,Zhao Zhen,Mengshuo Jia,Zheng Li,Haiyan Tang
出处
期刊:Applied Energy [Elsevier]
卷期号:313: 118769-118769 被引量:42
标识
DOI:10.1016/j.apenergy.2022.118769
摘要

Numerical Weather Prediction (NWP) is the key to precise wind power forecasting (WPF), which can be enhanced by the NWP correction and scenario partition techniques. However, on the one hand, existing NWP correction techniques may enlarge the volatility of ensemble NWP which disturbs the subsequent WPF. On the other hand, existing scenario partition techniques cannot precisely predict wind power in fluctuating scenarios by assuming NWP is totally reliable. Therefore, this paper proposes a novel NWP enhanced WPF method based on rank ensemble and probabilistic fluctuation awareness. Firstly, Rank Bayesian Ensemble (RBE) method is intended based on the stationary NWP rank, which generates a stable and accurate ensemble NWP. Secondly, a fluctuation scenarios partition framework is devised to establish a fluctuation awareness model with NWP’s credibility quantified. The framework works in a three-step manner, including characterization, matching, and inference of wind fluctuation events: respectively as Fluctuation identification and feature embedding (FIGE), Fluctuating mapping algorithm (FMA), and Probabilistic fluctuation warning (PFW). Finally, we incorporate the two enhancement techniques in a forecasting method in the ultra-short-term. A real-world wind farm with four NWP sources data validates the superiority and robustness of the proposed WPF method. The result shows that our method can reduce the four hour-ahead rooted mean square error (RMSE) by 2.16%–4.36% compared to baseline models. Meanwhile, the stability of ensemble NWP and the effectiveness of fluctuation scenario partition are also discussed. • Proposed enhancement techniques improve NWP’s contribution to forecasting accuracy. • NWP rank describes the stable performance of multi-source NWP in typical weather. • Scenario partition effectively models and predicts the wind fluctuation events. • Fluctuation probability is inferred in each moment with NWP credibility quantified. • Superiority of the two NWP enhancement techniques is proved in the real-world case.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿兹卡班完成签到 ,获得积分10
13秒前
Jasper应助白华苍松采纳,获得10
45秒前
FashionBoy应助科研通管家采纳,获得10
58秒前
鱿鱼起司发布了新的文献求助10
1分钟前
合适的代秋完成签到 ,获得积分10
1分钟前
Orange应助热情奇异果采纳,获得10
1分钟前
Timelapse应助yishan采纳,获得10
1分钟前
1分钟前
2分钟前
涛1完成签到 ,获得积分10
3分钟前
4分钟前
缥缈月光完成签到 ,获得积分10
4分钟前
温不胜的破木吉他完成签到 ,获得积分10
5分钟前
souther完成签到,获得积分0
5分钟前
英俊的铭应助yishan采纳,获得10
5分钟前
5分钟前
安平完成签到,获得积分10
5分钟前
6分钟前
聪慧的凝海完成签到 ,获得积分10
6分钟前
Kate发布了新的文献求助10
6分钟前
小超人完成签到 ,获得积分10
6分钟前
6分钟前
orixero应助Ni采纳,获得10
6分钟前
7分钟前
Ni发布了新的文献求助10
7分钟前
赵一完成签到 ,获得积分10
7分钟前
一次完成签到,获得积分10
7分钟前
7分钟前
一次发布了新的文献求助10
7分钟前
7分钟前
7分钟前
7分钟前
7分钟前
yishan发布了新的文献求助10
7分钟前
8分钟前
8分钟前
米奇妙妙屋完成签到,获得积分10
8分钟前
8分钟前
搜集达人应助Claudia采纳,获得10
8分钟前
Bond完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5564990
求助须知:如何正确求助?哪些是违规求助? 4649719
关于积分的说明 14689286
捐赠科研通 4591666
什么是DOI,文献DOI怎么找? 2519330
邀请新用户注册赠送积分活动 1491903
关于科研通互助平台的介绍 1463006