Numerical weather prediction enhanced wind power forecasting: Rank ensemble and probabilistic fluctuation awareness

数值天气预报 风电预测 概率逻辑 分拆(数论) 稳健性(进化) 集合预报 概率预测 气象学 数据同化 数学 计算机科学 算法 统计 电力系统 功率(物理) 地理 生物化学 物理 化学 量子力学 组合数学 基因
作者
Chenyu Liu,Xuemin Zhang,Shengwei Mei,Zhao Zhen,Mengshuo Jia,Zheng Li,Haiyan Tang
出处
期刊:Applied Energy [Elsevier]
卷期号:313: 118769-118769 被引量:42
标识
DOI:10.1016/j.apenergy.2022.118769
摘要

Numerical Weather Prediction (NWP) is the key to precise wind power forecasting (WPF), which can be enhanced by the NWP correction and scenario partition techniques. However, on the one hand, existing NWP correction techniques may enlarge the volatility of ensemble NWP which disturbs the subsequent WPF. On the other hand, existing scenario partition techniques cannot precisely predict wind power in fluctuating scenarios by assuming NWP is totally reliable. Therefore, this paper proposes a novel NWP enhanced WPF method based on rank ensemble and probabilistic fluctuation awareness. Firstly, Rank Bayesian Ensemble (RBE) method is intended based on the stationary NWP rank, which generates a stable and accurate ensemble NWP. Secondly, a fluctuation scenarios partition framework is devised to establish a fluctuation awareness model with NWP’s credibility quantified. The framework works in a three-step manner, including characterization, matching, and inference of wind fluctuation events: respectively as Fluctuation identification and feature embedding (FIGE), Fluctuating mapping algorithm (FMA), and Probabilistic fluctuation warning (PFW). Finally, we incorporate the two enhancement techniques in a forecasting method in the ultra-short-term. A real-world wind farm with four NWP sources data validates the superiority and robustness of the proposed WPF method. The result shows that our method can reduce the four hour-ahead rooted mean square error (RMSE) by 2.16%–4.36% compared to baseline models. Meanwhile, the stability of ensemble NWP and the effectiveness of fluctuation scenario partition are also discussed. • Proposed enhancement techniques improve NWP’s contribution to forecasting accuracy. • NWP rank describes the stable performance of multi-source NWP in typical weather. • Scenario partition effectively models and predicts the wind fluctuation events. • Fluctuation probability is inferred in each moment with NWP credibility quantified. • Superiority of the two NWP enhancement techniques is proved in the real-world case.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cloud完成签到,获得积分10
刚刚
西溪完成签到,获得积分10
1秒前
1秒前
2秒前
omkg完成签到,获得积分10
2秒前
RDF发布了新的文献求助10
5秒前
西原的橙果完成签到,获得积分10
6秒前
小王同学完成签到,获得积分10
6秒前
杳鸢应助omkg采纳,获得10
6秒前
杜华詹发布了新的文献求助10
7秒前
7秒前
Will发布了新的文献求助10
10秒前
精明人达完成签到,获得积分10
11秒前
12秒前
渊崖曙春应助杜华詹采纳,获得10
13秒前
汉堡包应助杜华詹采纳,获得10
13秒前
倒没有你的硫氰酸完成签到,获得积分10
14秒前
曾曾完成签到,获得积分10
15秒前
活泼的雨灵完成签到,获得积分10
15秒前
科研通AI2S应助Qixy采纳,获得10
15秒前
15秒前
16秒前
21秒前
科研小白鼠完成签到,获得积分10
21秒前
22秒前
24秒前
24秒前
25秒前
明理的又柔完成签到 ,获得积分20
26秒前
lsl完成签到,获得积分20
26秒前
林子觽完成签到,获得积分10
26秒前
26秒前
ding应助hihi采纳,获得10
26秒前
谢天赐完成签到 ,获得积分10
28秒前
嘚嘚发布了新的文献求助30
29秒前
Gulu_完成签到 ,获得积分10
29秒前
鱼柿子发布了新的文献求助10
29秒前
拼搏绿旋发布了新的文献求助10
30秒前
孤独葶完成签到,获得积分10
33秒前
ggod完成签到,获得积分10
34秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464222
求助须知:如何正确求助?哪些是违规求助? 3057540
关于积分的说明 9057512
捐赠科研通 2747626
什么是DOI,文献DOI怎么找? 1507432
科研通“疑难数据库(出版商)”最低求助积分说明 696553
邀请新用户注册赠送积分活动 696070