Numerical weather prediction enhanced wind power forecasting: Rank ensemble and probabilistic fluctuation awareness

数值天气预报 风电预测 概率逻辑 分拆(数论) 稳健性(进化) 集合预报 概率预测 气象学 数据同化 数学 计算机科学 算法 统计 电力系统 功率(物理) 地理 组合数学 物理 基因 量子力学 化学 生物化学
作者
Chenyu Liu,Xuemin Zhang,Shengwei Mei,Zhao Zhen,Mengshuo Jia,Zheng Li,Haiyan Tang
出处
期刊:Applied Energy [Elsevier BV]
卷期号:313: 118769-118769 被引量:42
标识
DOI:10.1016/j.apenergy.2022.118769
摘要

Numerical Weather Prediction (NWP) is the key to precise wind power forecasting (WPF), which can be enhanced by the NWP correction and scenario partition techniques. However, on the one hand, existing NWP correction techniques may enlarge the volatility of ensemble NWP which disturbs the subsequent WPF. On the other hand, existing scenario partition techniques cannot precisely predict wind power in fluctuating scenarios by assuming NWP is totally reliable. Therefore, this paper proposes a novel NWP enhanced WPF method based on rank ensemble and probabilistic fluctuation awareness. Firstly, Rank Bayesian Ensemble (RBE) method is intended based on the stationary NWP rank, which generates a stable and accurate ensemble NWP. Secondly, a fluctuation scenarios partition framework is devised to establish a fluctuation awareness model with NWP’s credibility quantified. The framework works in a three-step manner, including characterization, matching, and inference of wind fluctuation events: respectively as Fluctuation identification and feature embedding (FIGE), Fluctuating mapping algorithm (FMA), and Probabilistic fluctuation warning (PFW). Finally, we incorporate the two enhancement techniques in a forecasting method in the ultra-short-term. A real-world wind farm with four NWP sources data validates the superiority and robustness of the proposed WPF method. The result shows that our method can reduce the four hour-ahead rooted mean square error (RMSE) by 2.16%–4.36% compared to baseline models. Meanwhile, the stability of ensemble NWP and the effectiveness of fluctuation scenario partition are also discussed. • Proposed enhancement techniques improve NWP’s contribution to forecasting accuracy. • NWP rank describes the stable performance of multi-source NWP in typical weather. • Scenario partition effectively models and predicts the wind fluctuation events. • Fluctuation probability is inferred in each moment with NWP credibility quantified. • Superiority of the two NWP enhancement techniques is proved in the real-world case.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无花果应助孙彦琪采纳,获得10
2秒前
2秒前
Sarina完成签到,获得积分10
2秒前
Reese完成签到,获得积分10
3秒前
Leffzeng发布了新的文献求助20
3秒前
科研通AI6应助song采纳,获得10
3秒前
4秒前
零零完成签到,获得积分10
4秒前
星星发布了新的文献求助10
4秒前
mklwxhlsd发布了新的文献求助10
5秒前
5秒前
Li关注了科研通微信公众号
6秒前
桐桐应助MIranda采纳,获得10
6秒前
ahah完成签到,获得积分10
7秒前
7秒前
7秒前
受伤白昼发布了新的文献求助10
8秒前
8秒前
1010完成签到,获得积分10
8秒前
这个名字就比原来的好听完成签到,获得积分10
8秒前
comeon完成签到,获得积分10
9秒前
yunyunya发布了新的文献求助10
9秒前
10秒前
WYW发布了新的文献求助10
10秒前
嘿嘿发布了新的文献求助10
10秒前
研友_VZG7GZ应助南小槿采纳,获得10
11秒前
额尔其子应助efine采纳,获得10
11秒前
李爱国应助彩色的德地采纳,获得10
11秒前
里里完成签到,获得积分10
11秒前
peng完成签到,获得积分10
11秒前
CQY完成签到 ,获得积分10
11秒前
12秒前
12秒前
共享精神应助渤海少年采纳,获得10
12秒前
vocrious完成签到,获得积分10
12秒前
科研通AI5应助呆萌的寄风采纳,获得10
12秒前
大个应助林雾采纳,获得10
13秒前
隔壁发布了新的文献求助10
13秒前
212774完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001525
求助须知:如何正确求助?哪些是违规求助? 4246659
关于积分的说明 13230789
捐赠科研通 4045478
什么是DOI,文献DOI怎么找? 2213078
邀请新用户注册赠送积分活动 1223305
关于科研通互助平台的介绍 1143569