Numerical weather prediction enhanced wind power forecasting: Rank ensemble and probabilistic fluctuation awareness

数值天气预报 风电预测 概率逻辑 分拆(数论) 稳健性(进化) 集合预报 概率预测 气象学 数据同化 数学 计算机科学 算法 统计 电力系统 功率(物理) 地理 生物化学 物理 化学 量子力学 组合数学 基因
作者
Chenyu Liu,Xuemin Zhang,Shengwei Mei,Zhao Zhen,Mengshuo Jia,Zheng Li,Haiyan Tang
出处
期刊:Applied Energy [Elsevier BV]
卷期号:313: 118769-118769 被引量:42
标识
DOI:10.1016/j.apenergy.2022.118769
摘要

Numerical Weather Prediction (NWP) is the key to precise wind power forecasting (WPF), which can be enhanced by the NWP correction and scenario partition techniques. However, on the one hand, existing NWP correction techniques may enlarge the volatility of ensemble NWP which disturbs the subsequent WPF. On the other hand, existing scenario partition techniques cannot precisely predict wind power in fluctuating scenarios by assuming NWP is totally reliable. Therefore, this paper proposes a novel NWP enhanced WPF method based on rank ensemble and probabilistic fluctuation awareness. Firstly, Rank Bayesian Ensemble (RBE) method is intended based on the stationary NWP rank, which generates a stable and accurate ensemble NWP. Secondly, a fluctuation scenarios partition framework is devised to establish a fluctuation awareness model with NWP’s credibility quantified. The framework works in a three-step manner, including characterization, matching, and inference of wind fluctuation events: respectively as Fluctuation identification and feature embedding (FIGE), Fluctuating mapping algorithm (FMA), and Probabilistic fluctuation warning (PFW). Finally, we incorporate the two enhancement techniques in a forecasting method in the ultra-short-term. A real-world wind farm with four NWP sources data validates the superiority and robustness of the proposed WPF method. The result shows that our method can reduce the four hour-ahead rooted mean square error (RMSE) by 2.16%–4.36% compared to baseline models. Meanwhile, the stability of ensemble NWP and the effectiveness of fluctuation scenario partition are also discussed. • Proposed enhancement techniques improve NWP’s contribution to forecasting accuracy. • NWP rank describes the stable performance of multi-source NWP in typical weather. • Scenario partition effectively models and predicts the wind fluctuation events. • Fluctuation probability is inferred in each moment with NWP credibility quantified. • Superiority of the two NWP enhancement techniques is proved in the real-world case.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈发布了新的文献求助10
刚刚
刚刚
Lontano完成签到,获得积分10
1秒前
2秒前
CipherSage应助苏哈托采纳,获得10
3秒前
3秒前
玖叁玖关注了科研通微信公众号
4秒前
陈一昂完成签到,获得积分20
4秒前
7秒前
怪杰完成签到,获得积分10
8秒前
谦让寻绿发布了新的文献求助10
8秒前
8秒前
9秒前
Aaron完成签到,获得积分10
9秒前
11秒前
充电宝应助zylyl采纳,获得10
11秒前
毕业不秃头完成签到,获得积分10
11秒前
wwk完成签到,获得积分20
12秒前
12秒前
13秒前
Ricky发布了新的文献求助10
13秒前
luuer发布了新的文献求助10
15秒前
hamigung发布了新的文献求助10
15秒前
852应助明天开始戒绿茶采纳,获得10
16秒前
完美世界应助wwk采纳,获得10
16秒前
domingo完成签到,获得积分10
17秒前
Soin完成签到,获得积分10
17秒前
吱哦周发布了新的文献求助10
17秒前
18秒前
情怀应助maymei采纳,获得10
19秒前
晚秋北斗完成签到 ,获得积分10
19秒前
19秒前
安稳毕业实验完成签到 ,获得积分10
21秒前
21秒前
ludwig发布了新的文献求助10
23秒前
冷酷的树叶完成签到 ,获得积分10
23秒前
23秒前
23秒前
24秒前
24秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962070
求助须知:如何正确求助?哪些是违规求助? 3508372
关于积分的说明 11140413
捐赠科研通 3240967
什么是DOI,文献DOI怎么找? 1791157
邀请新用户注册赠送积分活动 872793
科研通“疑难数据库(出版商)”最低求助积分说明 803371