PIAFusion: A progressive infrared and visible image fusion network based on illumination aware

计算机科学 人工智能 融合 图像融合 水准点(测量) 突出 计算机视觉 图像(数学) 过程(计算) 分割 模式识别(心理学) 大地测量学 语言学 操作系统 哲学 地理
作者
Linfeng Tang,Jiteng Yuan,Hao Zhang,Xingyu Jiang,Jiayi Ma
出处
期刊:Information Fusion [Elsevier BV]
卷期号:83-84: 79-92 被引量:483
标识
DOI:10.1016/j.inffus.2022.03.007
摘要

Infrared and visible image fusion aims to synthesize a single fused image containing salient targets and abundant texture details even under extreme illumination conditions. However, existing image fusion algorithms fail to take the illumination factor into account in the modeling process. In this paper, we propose a progressive image fusion network based on illumination-aware, termed as PIAFusion, which adaptively maintains the intensity distribution of salient targets and preserves texture information in the background. Specifically, we design an illumination-aware sub-network to estimate the illumination distribution and calculate the illumination probability. Moreover, we utilize the illumination probability to construct an illumination-aware loss to guide the training of the fusion network. The cross-modality differential aware fusion module and halfway fusion strategy completely integrate common and complementary information under the constraint of illumination-aware loss. In addition, a new benchmark dataset for infrared and visible image fusion, i.e., Multi-Spectral Road Scenarios (available at https://github.com/Linfeng-Tang/MSRS), is released to support network training and comprehensive evaluation. Extensive experiments demonstrate the superiority of our method over state-of-the-art alternatives in terms of target maintenance and texture preservation. Particularly, our progressive fusion framework could round-the-clock integrate meaningful information from source images according to illumination conditions. Furthermore, the application to semantic segmentation demonstrates the potential of our PIAFusion for high-level vision tasks. Our codes will be available at https://github.com/Linfeng-Tang/PIAFusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
淘宝叮咚完成签到,获得积分10
1秒前
1秒前
司空晋鹏发布了新的文献求助10
1秒前
1秒前
机智灵薇发布了新的文献求助10
2秒前
laber应助tengs采纳,获得50
4秒前
th发布了新的文献求助30
5秒前
河马完成签到 ,获得积分10
5秒前
穆泽完成签到,获得积分10
5秒前
孤独超短裙完成签到,获得积分10
5秒前
品品完成签到,获得积分10
6秒前
Jianhua发布了新的文献求助10
6秒前
小齐小齐发布了新的文献求助10
6秒前
张立敏发布了新的文献求助10
6秒前
天真初蝶发布了新的文献求助10
6秒前
7秒前
yb完成签到,获得积分10
8秒前
Sunny完成签到,获得积分10
8秒前
司空晋鹏完成签到,获得积分10
10秒前
冷傲的青曼完成签到,获得积分20
10秒前
yangxuwen99完成签到,获得积分10
10秒前
醉挽清风完成签到,获得积分20
10秒前
euy发布了新的文献求助10
11秒前
12秒前
米娅完成签到,获得积分10
12秒前
12秒前
Albee完成签到,获得积分10
13秒前
含含含完成签到,获得积分10
13秒前
15秒前
15秒前
邱仇天发布了新的文献求助10
16秒前
17秒前
小二郎应助Tummy采纳,获得10
17秒前
量子星尘发布了新的文献求助10
18秒前
jiaying发布了新的文献求助10
18秒前
清爽老九发布了新的文献求助20
18秒前
浮游应助euy采纳,获得10
19秒前
乐乐应助小太阳采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5048169
求助须知:如何正确求助?哪些是违规求助? 4276803
关于积分的说明 13331169
捐赠科研通 4091278
什么是DOI,文献DOI怎么找? 2238889
邀请新用户注册赠送积分活动 1245897
关于科研通互助平台的介绍 1174356