PIAFusion: A progressive infrared and visible image fusion network based on illumination aware

计算机科学 人工智能 融合 图像融合 水准点(测量) 突出 计算机视觉 图像(数学) 过程(计算) 分割 模式识别(心理学) 大地测量学 语言学 操作系统 哲学 地理
作者
Linfeng Tang,Jiteng Yuan,Hao Zhang,Xingyu Jiang,Jiayi Ma
出处
期刊:Information Fusion [Elsevier]
卷期号:83-84: 79-92 被引量:722
标识
DOI:10.1016/j.inffus.2022.03.007
摘要

Infrared and visible image fusion aims to synthesize a single fused image containing salient targets and abundant texture details even under extreme illumination conditions. However, existing image fusion algorithms fail to take the illumination factor into account in the modeling process. In this paper, we propose a progressive image fusion network based on illumination-aware, termed as PIAFusion, which adaptively maintains the intensity distribution of salient targets and preserves texture information in the background. Specifically, we design an illumination-aware sub-network to estimate the illumination distribution and calculate the illumination probability. Moreover, we utilize the illumination probability to construct an illumination-aware loss to guide the training of the fusion network. The cross-modality differential aware fusion module and halfway fusion strategy completely integrate common and complementary information under the constraint of illumination-aware loss. In addition, a new benchmark dataset for infrared and visible image fusion, i.e., Multi-Spectral Road Scenarios (available at https://github.com/Linfeng-Tang/MSRS), is released to support network training and comprehensive evaluation. Extensive experiments demonstrate the superiority of our method over state-of-the-art alternatives in terms of target maintenance and texture preservation. Particularly, our progressive fusion framework could round-the-clock integrate meaningful information from source images according to illumination conditions. Furthermore, the application to semantic segmentation demonstrates the potential of our PIAFusion for high-level vision tasks. Our codes will be available at https://github.com/Linfeng-Tang/PIAFusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周一一完成签到,获得积分10
刚刚
Libra完成签到,获得积分10
刚刚
刚刚
一一完成签到,获得积分10
刚刚
1秒前
执着黑米完成签到 ,获得积分10
1秒前
1秒前
浪费完成签到 ,获得积分10
1秒前
2秒前
嘎嘎完成签到,获得积分20
2秒前
Jackson_Cai完成签到,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
天天下文献完成签到 ,获得积分10
4秒前
4秒前
4秒前
温暖书雪完成签到,获得积分10
4秒前
FunnyL发布了新的文献求助10
4秒前
嘟嘟发布了新的文献求助10
5秒前
orixero应助晕倒一下采纳,获得10
5秒前
英俊水池完成签到,获得积分10
5秒前
溪水完成签到 ,获得积分10
5秒前
飞蚁完成签到,获得积分10
5秒前
YY完成签到,获得积分10
5秒前
6秒前
7秒前
chengli完成签到,获得积分10
7秒前
岁岁完成签到 ,获得积分10
7秒前
tangyong完成签到,获得积分10
8秒前
Japrin完成签到,获得积分10
8秒前
星辰大海完成签到,获得积分10
9秒前
charon完成签到 ,获得积分10
9秒前
大魁完成签到,获得积分10
9秒前
心悦SCI完成签到,获得积分10
9秒前
白日幻想家完成签到 ,获得积分10
9秒前
stephanine完成签到 ,获得积分10
10秒前
fan051500完成签到,获得积分10
10秒前
Queena完成签到,获得积分10
11秒前
woodword发布了新的文献求助10
11秒前
SCO完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482803
求助须知:如何正确求助?哪些是违规求助? 4583511
关于积分的说明 14390213
捐赠科研通 4512809
什么是DOI,文献DOI怎么找? 2473255
邀请新用户注册赠送积分活动 1459255
关于科研通互助平台的介绍 1432883