重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

PIAFusion: A progressive infrared and visible image fusion network based on illumination aware

计算机科学 人工智能 融合 图像融合 水准点(测量) 突出 计算机视觉 图像(数学) 过程(计算) 分割 模式识别(心理学) 大地测量学 语言学 操作系统 哲学 地理
作者
Linfeng Tang,Jiteng Yuan,Hao Zhang,Xingyu Jiang,Jiayi Ma
出处
期刊:Information Fusion [Elsevier]
卷期号:83-84: 79-92 被引量:722
标识
DOI:10.1016/j.inffus.2022.03.007
摘要

Infrared and visible image fusion aims to synthesize a single fused image containing salient targets and abundant texture details even under extreme illumination conditions. However, existing image fusion algorithms fail to take the illumination factor into account in the modeling process. In this paper, we propose a progressive image fusion network based on illumination-aware, termed as PIAFusion, which adaptively maintains the intensity distribution of salient targets and preserves texture information in the background. Specifically, we design an illumination-aware sub-network to estimate the illumination distribution and calculate the illumination probability. Moreover, we utilize the illumination probability to construct an illumination-aware loss to guide the training of the fusion network. The cross-modality differential aware fusion module and halfway fusion strategy completely integrate common and complementary information under the constraint of illumination-aware loss. In addition, a new benchmark dataset for infrared and visible image fusion, i.e., Multi-Spectral Road Scenarios (available at https://github.com/Linfeng-Tang/MSRS), is released to support network training and comprehensive evaluation. Extensive experiments demonstrate the superiority of our method over state-of-the-art alternatives in terms of target maintenance and texture preservation. Particularly, our progressive fusion framework could round-the-clock integrate meaningful information from source images according to illumination conditions. Furthermore, the application to semantic segmentation demonstrates the potential of our PIAFusion for high-level vision tasks. Our codes will be available at https://github.com/Linfeng-Tang/PIAFusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
下文献的蜉蝣完成签到 ,获得积分10
2秒前
yznfly应助知食分子采纳,获得40
3秒前
大个应助党蕊芳采纳,获得10
3秒前
4秒前
今日发布了新的文献求助10
4秒前
5秒前
Tonson应助自由青采纳,获得10
5秒前
6秒前
桐桐应助单薄的小松鼠采纳,获得10
6秒前
斯文凝蕊完成签到,获得积分10
7秒前
科研通AI6应助1111采纳,获得10
8秒前
8秒前
星辰大海应助水文小白采纳,获得10
8秒前
情怀应助彩色的诗桃采纳,获得10
9秒前
Tonson应助我是聪聪呦采纳,获得10
9秒前
10秒前
安静友灵发布了新的文献求助10
10秒前
情怀应助梦话采纳,获得10
11秒前
11秒前
无花果应助桃桃奶盖采纳,获得10
11秒前
11秒前
12秒前
Nicole发布了新的文献求助10
12秒前
13秒前
我是老大应助chanlei采纳,获得10
13秒前
13秒前
石石刘完成签到 ,获得积分10
14秒前
za发布了新的文献求助10
14秒前
15秒前
北张发布了新的文献求助10
16秒前
16秒前
LSY发布了新的文献求助10
17秒前
歪比巴卜好龙关注了科研通微信公众号
17秒前
完美世界应助harry采纳,获得10
17秒前
18秒前
passion发布了新的文献求助10
19秒前
19秒前
茶送白粥完成签到,获得积分10
21秒前
21秒前
浮游应助一支得卦采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467931
求助须知:如何正确求助?哪些是违规求助? 4571421
关于积分的说明 14330283
捐赠科研通 4497999
什么是DOI,文献DOI怎么找? 2464266
邀请新用户注册赠送积分活动 1453006
关于科研通互助平台的介绍 1427707