Evaluating the sensitivity of deep learning to inter-reader variations in lesion delineations on bi-parametric MRI in identifying clinically significant prostate cancer

前列腺癌 参数统计 医学 人工智能 灵敏度(控制系统) 病变 磁共振成像 深度学习 放射科 计算机科学 癌症 病理 数学 统计 工程类 内科学 电子工程
作者
Ansh Roge,Amogh Hiremath,Michael Sobota,Sree Harsha Tirumani,Leonardo Kayat Bittencourt,Justin Ream,Ryan Ward,Halimat Olaniyan,Sadhna Verma,Andrei S. Purysko,Anant Madabhushi,Rakesh Shiradkar
出处
期刊:Medical Imaging 2018: Computer-Aided Diagnosis 卷期号:: 41-41 被引量:2
标识
DOI:10.1117/12.2613245
摘要

Deep learning based convolutional neural networks (CNNs) for prostate cancer (PCa) risk stratification employ radiologist delineated regions of interest (ROIs) on MRI. These ROIs contain the reader's interpretation of the region of PCa. Variations in reader annotations change the features that are extracted from the ROIs, which may in turn affect classification performance of CNNs. In this study, we sought to analyze the effect of variations in inter-reader delineations of PCa ROIs on training of CNNs with regards to distinguishing clinically significant (csPCa) and insignificant PCa (ciPCa). We employed 180 patient studies (n=274 lesions) from 3 cohorts who underwent 3T multi-parametric MRI followed by MRI-targeted biopsy and/or radical prostatectomy. ISUP Gleason grade groups (GGG) obtained from pathology were used to determine csPCa (GGG≥2) and ciPCa (GGG=1). 5 experienced radiologists, with over 5 years of experience in prostate imaging, delineated PCa ROIs on bi-parametric MRI (bpMRI including T2 weighted (T2W) and diffusion weighted (DWI) sequences) within the training set (n1=160 lesions) using targeted biopsy locations. Patches were extracted using the ROIs which were then used to train individual CNNs (N1-N5) using the SqueezeNet architecture. The average volume for readerdelineated ROIs used for training varied greatly, ranging between 1106 and 2107 mm across all readers. The resulting networks showed no significant difference in classification performance (AUC= 0.82 ± 0.02) indicating that they were relatively robust to inter-reader variations in ROI. These models were evaluated on independent test sets (n2=85 lesions, n3=29 lesions) where ROIs were obtained by co-registration of MRI with post-surgical pathology, unaffected by inter-reader variations in ROIs. Network performance across D2 and D3 was 0.80±0.02 and 0.62 ± 0.03, respectively. The CNN predictions were moderately consistent, with ICC(2,1) scores across D2 and D3 being 0.74 and 0.54, respectively. Higher agreement in ROI overlap produced higher correlation in predictions on external test sets (R = 0.89, p < 0.05). Furthermore, higher average ROI volume produced greater AUC scores on D3, indicating that comprehensive ROIs may provide more features for DL networks to use in classification. Inter-reader variations in ROIs on MRI may influence the reliability and generalizability of CNNs trained for PCa risk stratification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
有钱发布了新的文献求助10
刚刚
shirly发布了新的文献求助10
刚刚
1秒前
汉堡包应助Mr鹿采纳,获得30
1秒前
隐千发布了新的文献求助10
2秒前
3秒前
zyyyy发布了新的文献求助10
4秒前
wsd完成签到,获得积分10
5秒前
5秒前
感动背包发布了新的文献求助10
6秒前
脑洞疼应助flysky120采纳,获得10
6秒前
CodeCraft应助负责乐曲采纳,获得10
7秒前
丘比特应助花不语采纳,获得10
8秒前
qqqqqqqqqqq发布了新的文献求助10
8秒前
johnzsin发布了新的文献求助10
9秒前
CodeCraft应助RUI采纳,获得30
9秒前
小马甲应助zyyyy采纳,获得10
10秒前
科研通AI6应助wsd采纳,获得10
10秒前
11秒前
12秒前
Led发布了新的文献求助20
12秒前
UHPC完成签到,获得积分10
13秒前
慕青应助优秀远侵采纳,获得10
13秒前
14秒前
小蕊完成签到 ,获得积分10
14秒前
14秒前
14秒前
星辰大海应助子星采纳,获得10
15秒前
灰色与青发布了新的文献求助10
15秒前
无花果应助dandan采纳,获得10
16秒前
慕青应助lanbing802采纳,获得10
16秒前
Zhoujian发布了新的文献求助10
17秒前
duanxiaoyu发布了新的文献求助10
17秒前
19秒前
CodeCraft应助believe采纳,获得10
20秒前
晨曦微露发布了新的文献求助10
20秒前
RONG发布了新的文献求助10
21秒前
21秒前
21秒前
高分求助中
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5243219
求助须知:如何正确求助?哪些是违规求助? 4409563
关于积分的说明 13725579
捐赠科研通 4278999
什么是DOI,文献DOI怎么找? 2347900
邀请新用户注册赠送积分活动 1345179
关于科研通互助平台的介绍 1303229