Evaluating the sensitivity of deep learning to inter-reader variations in lesion delineations on bi-parametric MRI in identifying clinically significant prostate cancer

前列腺癌 参数统计 医学 人工智能 灵敏度(控制系统) 病变 磁共振成像 深度学习 放射科 计算机科学 癌症 病理 数学 统计 工程类 内科学 电子工程
作者
Ansh Roge,Amogh Hiremath,Michael Sobota,Sree Harsha Tirumani,Leonardo Kayat Bittencourt,Justin Ream,Ryan Ward,Halimat Olaniyan,Sadhna Verma,Andrei S. Purysko,Anant Madabhushi,Rakesh Shiradkar
出处
期刊:Medical Imaging 2018: Computer-Aided Diagnosis 卷期号:: 41-41 被引量:2
标识
DOI:10.1117/12.2613245
摘要

Deep learning based convolutional neural networks (CNNs) for prostate cancer (PCa) risk stratification employ radiologist delineated regions of interest (ROIs) on MRI. These ROIs contain the reader's interpretation of the region of PCa. Variations in reader annotations change the features that are extracted from the ROIs, which may in turn affect classification performance of CNNs. In this study, we sought to analyze the effect of variations in inter-reader delineations of PCa ROIs on training of CNNs with regards to distinguishing clinically significant (csPCa) and insignificant PCa (ciPCa). We employed 180 patient studies (n=274 lesions) from 3 cohorts who underwent 3T multi-parametric MRI followed by MRI-targeted biopsy and/or radical prostatectomy. ISUP Gleason grade groups (GGG) obtained from pathology were used to determine csPCa (GGG≥2) and ciPCa (GGG=1). 5 experienced radiologists, with over 5 years of experience in prostate imaging, delineated PCa ROIs on bi-parametric MRI (bpMRI including T2 weighted (T2W) and diffusion weighted (DWI) sequences) within the training set (n1=160 lesions) using targeted biopsy locations. Patches were extracted using the ROIs which were then used to train individual CNNs (N1-N5) using the SqueezeNet architecture. The average volume for readerdelineated ROIs used for training varied greatly, ranging between 1106 and 2107 mm across all readers. The resulting networks showed no significant difference in classification performance (AUC= 0.82 ± 0.02) indicating that they were relatively robust to inter-reader variations in ROI. These models were evaluated on independent test sets (n2=85 lesions, n3=29 lesions) where ROIs were obtained by co-registration of MRI with post-surgical pathology, unaffected by inter-reader variations in ROIs. Network performance across D2 and D3 was 0.80±0.02 and 0.62 ± 0.03, respectively. The CNN predictions were moderately consistent, with ICC(2,1) scores across D2 and D3 being 0.74 and 0.54, respectively. Higher agreement in ROI overlap produced higher correlation in predictions on external test sets (R = 0.89, p < 0.05). Furthermore, higher average ROI volume produced greater AUC scores on D3, indicating that comprehensive ROIs may provide more features for DL networks to use in classification. Inter-reader variations in ROIs on MRI may influence the reliability and generalizability of CNNs trained for PCa risk stratification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助伯言采纳,获得10
刚刚
刚刚
Cchu应助RoyChen采纳,获得30
刚刚
gean发布了新的文献求助10
刚刚
桐桐应助稳重以冬采纳,获得10
1秒前
1秒前
1秒前
fff发布了新的文献求助10
1秒前
2秒前
2秒前
lc驳回了Owen应助
2秒前
小马甲应助彩色的德地采纳,获得10
2秒前
2秒前
传奇3应助李猫猫采纳,获得10
2秒前
可爱的函函应助jingjing采纳,获得10
2秒前
3秒前
米丫丫米完成签到 ,获得积分20
3秒前
Yan发布了新的文献求助10
3秒前
3秒前
星辰大海应助弦断陌殇采纳,获得30
4秒前
心灵美语芹完成签到,获得积分10
4秒前
4秒前
绿围巾姑姑完成签到,获得积分10
4秒前
张wx_100发布了新的文献求助10
4秒前
gean完成签到,获得积分10
4秒前
pan发布了新的文献求助10
5秒前
5秒前
dkxy完成签到,获得积分10
6秒前
秘密完成签到,获得积分10
6秒前
taotie发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
SHAO应助采花大盗采纳,获得10
7秒前
7秒前
lebron发布了新的文献求助10
7秒前
Astralis发布了新的文献求助10
7秒前
杨静完成签到,获得积分10
8秒前
8秒前
XinG完成签到,获得积分10
9秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979196
求助须知:如何正确求助?哪些是违规求助? 3523110
关于积分的说明 11216298
捐赠科研通 3260559
什么是DOI,文献DOI怎么找? 1800098
邀请新用户注册赠送积分活动 878823
科研通“疑难数据库(出版商)”最低求助积分说明 807092