已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Evaluating the sensitivity of deep learning to inter-reader variations in lesion delineations on bi-parametric MRI in identifying clinically significant prostate cancer

前列腺癌 参数统计 医学 人工智能 灵敏度(控制系统) 病变 磁共振成像 深度学习 放射科 计算机科学 癌症 病理 数学 统计 工程类 内科学 电子工程
作者
Ansh Roge,Amogh Hiremath,Michael Sobota,Sree Harsha Tirumani,Leonardo Kayat Bittencourt,Justin Ream,Ryan Ward,Halimat Olaniyan,Sadhna Verma,Andrei S. Purysko,Anant Madabhushi,Rakesh Shiradkar
出处
期刊:Medical Imaging 2018: Computer-Aided Diagnosis 卷期号:: 41-41 被引量:2
标识
DOI:10.1117/12.2613245
摘要

Deep learning based convolutional neural networks (CNNs) for prostate cancer (PCa) risk stratification employ radiologist delineated regions of interest (ROIs) on MRI. These ROIs contain the reader's interpretation of the region of PCa. Variations in reader annotations change the features that are extracted from the ROIs, which may in turn affect classification performance of CNNs. In this study, we sought to analyze the effect of variations in inter-reader delineations of PCa ROIs on training of CNNs with regards to distinguishing clinically significant (csPCa) and insignificant PCa (ciPCa). We employed 180 patient studies (n=274 lesions) from 3 cohorts who underwent 3T multi-parametric MRI followed by MRI-targeted biopsy and/or radical prostatectomy. ISUP Gleason grade groups (GGG) obtained from pathology were used to determine csPCa (GGG≥2) and ciPCa (GGG=1). 5 experienced radiologists, with over 5 years of experience in prostate imaging, delineated PCa ROIs on bi-parametric MRI (bpMRI including T2 weighted (T2W) and diffusion weighted (DWI) sequences) within the training set (n1=160 lesions) using targeted biopsy locations. Patches were extracted using the ROIs which were then used to train individual CNNs (N1-N5) using the SqueezeNet architecture. The average volume for readerdelineated ROIs used for training varied greatly, ranging between 1106 and 2107 mm across all readers. The resulting networks showed no significant difference in classification performance (AUC= 0.82 ± 0.02) indicating that they were relatively robust to inter-reader variations in ROI. These models were evaluated on independent test sets (n2=85 lesions, n3=29 lesions) where ROIs were obtained by co-registration of MRI with post-surgical pathology, unaffected by inter-reader variations in ROIs. Network performance across D2 and D3 was 0.80±0.02 and 0.62 ± 0.03, respectively. The CNN predictions were moderately consistent, with ICC(2,1) scores across D2 and D3 being 0.74 and 0.54, respectively. Higher agreement in ROI overlap produced higher correlation in predictions on external test sets (R = 0.89, p < 0.05). Furthermore, higher average ROI volume produced greater AUC scores on D3, indicating that comprehensive ROIs may provide more features for DL networks to use in classification. Inter-reader variations in ROIs on MRI may influence the reliability and generalizability of CNNs trained for PCa risk stratification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张土豆完成签到 ,获得积分10
1秒前
jl完成签到,获得积分10
2秒前
brwen完成签到,获得积分10
5秒前
10秒前
畅快幻柏发布了新的文献求助30
13秒前
传奇3应助课题分离采纳,获得10
15秒前
55555发布了新的文献求助20
16秒前
阿豪要发文章完成签到 ,获得积分10
18秒前
杨无敌完成签到 ,获得积分10
19秒前
能干的元龙完成签到 ,获得积分10
20秒前
畅快幻柏完成签到,获得积分20
20秒前
22秒前
不安的裘完成签到 ,获得积分10
22秒前
感动白开水完成签到,获得积分10
22秒前
24秒前
自由冰凡完成签到 ,获得积分10
26秒前
26秒前
周周发布了新的文献求助30
27秒前
彦子完成签到 ,获得积分10
28秒前
29秒前
TYM发布了新的文献求助10
29秒前
萤照夜清完成签到,获得积分20
30秒前
jiahui完成签到,获得积分10
30秒前
领导范儿应助yikiheting采纳,获得10
31秒前
汉堡包应助Cherry采纳,获得10
31秒前
31秒前
独孤骄子完成签到 ,获得积分10
37秒前
QQ完成签到 ,获得积分10
38秒前
40秒前
昀云发布了新的文献求助10
40秒前
别皱眉完成签到,获得积分20
41秒前
踏实的访文完成签到,获得积分20
42秒前
一只熊完成签到 ,获得积分10
42秒前
43秒前
朴实的若南完成签到,获得积分10
44秒前
dadadada发布了新的文献求助10
44秒前
lxzhou完成签到 ,获得积分10
46秒前
科研小白完成签到 ,获得积分10
48秒前
若愚发布了新的文献求助10
51秒前
周周完成签到,获得积分10
53秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
FDA-2: Frenchay Dysarthria Assessment 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3215531
求助须知:如何正确求助?哪些是违规求助? 2864197
关于积分的说明 8141683
捐赠科研通 2530406
什么是DOI,文献DOI怎么找? 1364647
科研通“疑难数据库(出版商)”最低求助积分说明 644219
邀请新用户注册赠送积分活动 616803