亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimizing the future: how mathematical models inform treatment schedules for cancer

一致性 数学模型 计算机科学 调度(生产过程) 地铁列车时刻表 个性化医疗 管理科学 癌症治疗 博弈论 风险分析(工程) 运筹学 数学优化 癌症 医学 数理经济学 数学 生物信息学 生物 经济 统计 物理 量子力学 内科学 操作系统
作者
Deepti Mathur,Ethan S. Barnett,Howard I. Scher,João B. Xavier
出处
期刊:Trends in cancer [Elsevier]
卷期号:8 (6): 506-516 被引量:17
标识
DOI:10.1016/j.trecan.2022.02.005
摘要

For decades, mathematical models have influenced how we schedule chemotherapeutics: the most notable example stems from the Norton–Simon hypothesis which led to the advent of dose-dense scheduling to improve disease-free and overall survival. Newer mathematical models have leveraged game theory and ecological principles to propose adaptive therapy scheduling, with the aim of stabilizing a patient's disease and preventing the growth of surviving resistant cell populations. Considering more than one therapy dramatically increases the complexity of predicting the optimal drug order and schedule for individual patients, and competing evidence supports simultaneous, sequential, or alternating treatment plans. Designing optimal therapeutic schedules most likely to benefit the individual will likely require personalized medicine treatment strategies utilizing both mathematical and clinical triage to assess what is both theoretically optimal and most practical. For decades, mathematical models have influenced how we schedule chemotherapeutics. More recently, mathematical models have leveraged lessons from ecology, evolution, and game theory to advance predictions of optimal treatment schedules, often in a personalized medicine manner. We discuss both established and emerging therapeutic strategies that deviate from canonical standard-of-care regimens, and how mathematical models have contributed to the design of such schedules. We first examine scheduling options for single therapies and review the advantages and disadvantages of various treatment plans. We then consider the challenge of scheduling multiple therapies, and review the mathematical and clinical support for various conflicting treatment schedules. Finally, we propose how a consilience of mathematical and clinical knowledge can best determine the optimal treatment schedules for patients. For decades, mathematical models have influenced how we schedule chemotherapeutics. More recently, mathematical models have leveraged lessons from ecology, evolution, and game theory to advance predictions of optimal treatment schedules, often in a personalized medicine manner. We discuss both established and emerging therapeutic strategies that deviate from canonical standard-of-care regimens, and how mathematical models have contributed to the design of such schedules. We first examine scheduling options for single therapies and review the advantages and disadvantages of various treatment plans. We then consider the challenge of scheduling multiple therapies, and review the mathematical and clinical support for various conflicting treatment schedules. Finally, we propose how a consilience of mathematical and clinical knowledge can best determine the optimal treatment schedules for patients. a treatment strategy that dynamically alters dosing in response to tumor progression/regression so as to maintain a stable tumor burden. a treatment plan for chemotherapy in which drugs are administered more frequently than in standard regimens. in this context, the cumulative dose administered over a period of time that affects the biological response. a lower ability of therapy-resistant clones to replicate in the absence of treatment relative to other threapy-sensitive clones in the same tumor. cell proliferation that follows a sigmoidal function, such that smaller tumors grow more rapidly than larger tumors. a treatment strategy in which low doses of chemotherapy are administered continuously. an emerging treatment strategy in which higher doses are administered followed by breaks in treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Zert发布了新的文献求助10
2秒前
bacteria完成签到,获得积分10
7秒前
在水一方应助11采纳,获得10
8秒前
七一藕完成签到,获得积分20
10秒前
小昏完成签到,获得积分10
11秒前
敬业乐群完成签到,获得积分10
12秒前
王者归来完成签到,获得积分10
15秒前
明理的蜗牛完成签到,获得积分10
19秒前
Alex驳回了思源应助
19秒前
22秒前
23秒前
26秒前
max完成签到,获得积分10
29秒前
阳6完成签到 ,获得积分10
34秒前
43秒前
壮观沉鱼完成签到 ,获得积分10
46秒前
48秒前
mjsdx完成签到 ,获得积分10
49秒前
守一完成签到,获得积分10
54秒前
1分钟前
FashionBoy应助啦啦啦就好采纳,获得10
1分钟前
南江悍匪发布了新的文献求助10
1分钟前
1分钟前
Panther完成签到,获得积分10
1分钟前
Alex发布了新的文献求助1000
1分钟前
harry发布了新的文献求助10
1分钟前
Kashing完成签到,获得积分0
1分钟前
南江悍匪完成签到,获得积分10
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
苹果丹烟完成签到 ,获得积分10
1分钟前
安渝完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
巫马嫣然完成签到,获得积分10
1分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345722
求助须知:如何正确求助?哪些是违规求助? 4480561
关于积分的说明 13946480
捐赠科研通 4378124
什么是DOI,文献DOI怎么找? 2405626
邀请新用户注册赠送积分活动 1398183
关于科研通互助平台的介绍 1370666