Optimizing the future: how mathematical models inform treatment schedules for cancer

一致性 数学模型 计算机科学 调度(生产过程) 地铁列车时刻表 个性化医疗 管理科学 癌症治疗 博弈论 风险分析(工程) 运筹学 数学优化 癌症 医学 数理经济学 数学 生物信息学 生物 经济 统计 物理 量子力学 内科学 操作系统
作者
Deepti Mathur,Ethan S. Barnett,Howard I. Scher,João B. Xavier
出处
期刊:Trends in cancer [Elsevier BV]
卷期号:8 (6): 506-516 被引量:17
标识
DOI:10.1016/j.trecan.2022.02.005
摘要

For decades, mathematical models have influenced how we schedule chemotherapeutics: the most notable example stems from the Norton–Simon hypothesis which led to the advent of dose-dense scheduling to improve disease-free and overall survival. Newer mathematical models have leveraged game theory and ecological principles to propose adaptive therapy scheduling, with the aim of stabilizing a patient's disease and preventing the growth of surviving resistant cell populations. Considering more than one therapy dramatically increases the complexity of predicting the optimal drug order and schedule for individual patients, and competing evidence supports simultaneous, sequential, or alternating treatment plans. Designing optimal therapeutic schedules most likely to benefit the individual will likely require personalized medicine treatment strategies utilizing both mathematical and clinical triage to assess what is both theoretically optimal and most practical. For decades, mathematical models have influenced how we schedule chemotherapeutics. More recently, mathematical models have leveraged lessons from ecology, evolution, and game theory to advance predictions of optimal treatment schedules, often in a personalized medicine manner. We discuss both established and emerging therapeutic strategies that deviate from canonical standard-of-care regimens, and how mathematical models have contributed to the design of such schedules. We first examine scheduling options for single therapies and review the advantages and disadvantages of various treatment plans. We then consider the challenge of scheduling multiple therapies, and review the mathematical and clinical support for various conflicting treatment schedules. Finally, we propose how a consilience of mathematical and clinical knowledge can best determine the optimal treatment schedules for patients. For decades, mathematical models have influenced how we schedule chemotherapeutics. More recently, mathematical models have leveraged lessons from ecology, evolution, and game theory to advance predictions of optimal treatment schedules, often in a personalized medicine manner. We discuss both established and emerging therapeutic strategies that deviate from canonical standard-of-care regimens, and how mathematical models have contributed to the design of such schedules. We first examine scheduling options for single therapies and review the advantages and disadvantages of various treatment plans. We then consider the challenge of scheduling multiple therapies, and review the mathematical and clinical support for various conflicting treatment schedules. Finally, we propose how a consilience of mathematical and clinical knowledge can best determine the optimal treatment schedules for patients. a treatment strategy that dynamically alters dosing in response to tumor progression/regression so as to maintain a stable tumor burden. a treatment plan for chemotherapy in which drugs are administered more frequently than in standard regimens. in this context, the cumulative dose administered over a period of time that affects the biological response. a lower ability of therapy-resistant clones to replicate in the absence of treatment relative to other threapy-sensitive clones in the same tumor. cell proliferation that follows a sigmoidal function, such that smaller tumors grow more rapidly than larger tumors. a treatment strategy in which low doses of chemotherapy are administered continuously. an emerging treatment strategy in which higher doses are administered followed by breaks in treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Leeu发布了新的文献求助30
1秒前
黎明发布了新的文献求助10
1秒前
GGbond发布了新的文献求助10
1秒前
gjm发布了新的文献求助10
1秒前
爆米花应助灵巧一笑采纳,获得10
1秒前
wanci应助科研通管家采纳,获得30
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
2秒前
猪猪hero发布了新的文献求助10
2秒前
万能图书馆应助虾米采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
Friday完成签到,获得积分20
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
916应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
田田发布了新的文献求助10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
3秒前
3秒前
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
916应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得30
3秒前
3秒前
SYLH应助科研通管家采纳,获得20
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
916应助科研通管家采纳,获得10
3秒前
916应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
5秒前
聪明夏天完成签到,获得积分10
5秒前
mmb完成签到,获得积分10
5秒前
呆萌的萝完成签到,获得积分10
6秒前
拉长的战斗机完成签到,获得积分10
7秒前
尊敬的凝丹完成签到 ,获得积分10
7秒前
黎明完成签到,获得积分10
7秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650