清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Optimizing the future: how mathematical models inform treatment schedules for cancer

一致性 数学模型 计算机科学 调度(生产过程) 地铁列车时刻表 个性化医疗 管理科学 癌症治疗 博弈论 风险分析(工程) 运筹学 数学优化 癌症 医学 数理经济学 数学 生物信息学 生物 经济 统计 物理 量子力学 内科学 操作系统
作者
Deepti Mathur,Ethan S. Barnett,Howard I. Scher,João B. Xavier
出处
期刊:Trends in cancer [Elsevier]
卷期号:8 (6): 506-516 被引量:17
标识
DOI:10.1016/j.trecan.2022.02.005
摘要

For decades, mathematical models have influenced how we schedule chemotherapeutics: the most notable example stems from the Norton–Simon hypothesis which led to the advent of dose-dense scheduling to improve disease-free and overall survival. Newer mathematical models have leveraged game theory and ecological principles to propose adaptive therapy scheduling, with the aim of stabilizing a patient's disease and preventing the growth of surviving resistant cell populations. Considering more than one therapy dramatically increases the complexity of predicting the optimal drug order and schedule for individual patients, and competing evidence supports simultaneous, sequential, or alternating treatment plans. Designing optimal therapeutic schedules most likely to benefit the individual will likely require personalized medicine treatment strategies utilizing both mathematical and clinical triage to assess what is both theoretically optimal and most practical. For decades, mathematical models have influenced how we schedule chemotherapeutics. More recently, mathematical models have leveraged lessons from ecology, evolution, and game theory to advance predictions of optimal treatment schedules, often in a personalized medicine manner. We discuss both established and emerging therapeutic strategies that deviate from canonical standard-of-care regimens, and how mathematical models have contributed to the design of such schedules. We first examine scheduling options for single therapies and review the advantages and disadvantages of various treatment plans. We then consider the challenge of scheduling multiple therapies, and review the mathematical and clinical support for various conflicting treatment schedules. Finally, we propose how a consilience of mathematical and clinical knowledge can best determine the optimal treatment schedules for patients. For decades, mathematical models have influenced how we schedule chemotherapeutics. More recently, mathematical models have leveraged lessons from ecology, evolution, and game theory to advance predictions of optimal treatment schedules, often in a personalized medicine manner. We discuss both established and emerging therapeutic strategies that deviate from canonical standard-of-care regimens, and how mathematical models have contributed to the design of such schedules. We first examine scheduling options for single therapies and review the advantages and disadvantages of various treatment plans. We then consider the challenge of scheduling multiple therapies, and review the mathematical and clinical support for various conflicting treatment schedules. Finally, we propose how a consilience of mathematical and clinical knowledge can best determine the optimal treatment schedules for patients. a treatment strategy that dynamically alters dosing in response to tumor progression/regression so as to maintain a stable tumor burden. a treatment plan for chemotherapy in which drugs are administered more frequently than in standard regimens. in this context, the cumulative dose administered over a period of time that affects the biological response. a lower ability of therapy-resistant clones to replicate in the absence of treatment relative to other threapy-sensitive clones in the same tumor. cell proliferation that follows a sigmoidal function, such that smaller tumors grow more rapidly than larger tumors. a treatment strategy in which low doses of chemotherapy are administered continuously. an emerging treatment strategy in which higher doses are administered followed by breaks in treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助科研通管家采纳,获得10
7秒前
kenchilie完成签到 ,获得积分10
7秒前
狂奔的蜗牛完成签到 ,获得积分10
20秒前
深情安青应助木耳采纳,获得10
31秒前
58秒前
翁怜晴完成签到,获得积分10
1分钟前
翁怜晴发布了新的文献求助10
1分钟前
vitamin完成签到 ,获得积分10
1分钟前
Akim应助Decline采纳,获得10
1分钟前
jerry完成签到 ,获得积分10
1分钟前
糖宝完成签到 ,获得积分10
1分钟前
香蕉觅云应助雪山飞龙采纳,获得10
1分钟前
guoxihan完成签到,获得积分10
1分钟前
精明书桃完成签到 ,获得积分10
2分钟前
Ava应助科研通管家采纳,获得10
2分钟前
杳鸢应助雪山飞龙采纳,获得30
2分钟前
charliechen完成签到 ,获得积分10
2分钟前
croissante完成签到 ,获得积分10
2分钟前
淞淞于我完成签到 ,获得积分10
2分钟前
菠萝谷波完成签到 ,获得积分10
2分钟前
杳鸢应助雪山飞龙采纳,获得30
2分钟前
爱静静应助雪山飞龙采纳,获得10
3分钟前
SciGPT应助sasa采纳,获得10
3分钟前
巴山石也完成签到 ,获得积分10
3分钟前
顺利的曼寒完成签到 ,获得积分10
3分钟前
雪山飞龙完成签到,获得积分10
3分钟前
zhdjj完成签到 ,获得积分10
3分钟前
3分钟前
研友_85rWQL发布了新的文献求助10
3分钟前
木耳完成签到,获得积分10
4分钟前
4分钟前
木耳发布了新的文献求助10
4分钟前
梦断奈何完成签到 ,获得积分10
4分钟前
奔跑的蒲公英完成签到,获得积分10
4分钟前
huiluowork完成签到 ,获得积分10
4分钟前
4分钟前
维维完成签到 ,获得积分10
4分钟前
Decline发布了新的文献求助10
4分钟前
摆渡人发布了新的文献求助10
4分钟前
榴莲完成签到,获得积分10
4分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150623
求助须知:如何正确求助?哪些是违规求助? 2802063
关于积分的说明 7846122
捐赠科研通 2459415
什么是DOI,文献DOI怎么找? 1309243
科研通“疑难数据库(出版商)”最低求助积分说明 628725
版权声明 601757