Gene Expression Profiling: Identification of Novel Pathways and Potential Biomarkers in Severe Acute Pancreatitis

医学 急性胰腺炎 胰腺炎 基因表达谱 败血症 发病机制 基因表达 基因 内科学 免疫学 生物化学 化学
作者
Maryam Nesvaderani,Bhavjinder K. Dhillon,Tracy Chew,Benjamin Tang,Arjun Baghela,Robert E. W. Hancock,Guy D. Eslick,Michael R. Cox
出处
期刊:Journal of The American College of Surgeons [Elsevier]
卷期号:234 (5): 803-815 被引量:29
标识
DOI:10.1097/xcs.0000000000000115
摘要

Determining the risk of developing severe acute pancreatitis (AP) on presentation to hospital is difficult but vital to enable early management decisions that reduce morbidity and mortality. The objective of this study was to determine global gene expression profiles of patients with different acute pancreatitis severity to identify genes and molecular mechanisms involved in the pathogenesis of severe AP.AP patients (n = 87) were recruited within 24 hours of admission to the Emergency Department and were confirmed to exhibit at least 2 of the following features: (1) abdominal pain characteristic of AP, (2) serum amylase and/or lipase more than 3-fold the upper laboratory limit considered normal, and/or (3) radiographically demonstrated AP on CT scan. Severity was defined according to the Revised Atlanta classification. Thirty-two healthy volunteers were also recruited and peripheral venous blood was collected for performing RNA-Seq.In severe AP, 422 genes (185 upregulated, 237 downregulated) were significantly differentially expressed when compared with moderately severe and mild cases. Pathway analysis revealed changes in specific innate and adaptive immune, sepsis-related, and surface modification pathways in severe AP. Data-driven approaches revealed distinct gene expression groups (endotypes), which were not entirely overlapping with the clinical Atlanta classification. Importantly, severe and moderately severe AP patients clustered away from healthy controls, whereas mild AP patients did not exhibit any clear separation, suggesting distinct underlying mechanisms that may influence severity of AP.There were significant differences in gene expression affecting the severity of AP, revealing a central role of specific immunological pathways. Despite the existence of patient endotypes, a 4-gene transcriptomic signature (S100A8, S100A9, MMP25, and MT-ND4L) was determined that can predict severe AP with an accuracy of 64%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HH完成签到,获得积分20
刚刚
1秒前
whm完成签到,获得积分10
1秒前
3秒前
邬傥完成签到,获得积分10
4秒前
tomato应助执着采纳,获得20
5秒前
大方嵩发布了新的文献求助10
5秒前
梓ccc完成签到,获得积分10
5秒前
5秒前
求助发布了新的文献求助10
6秒前
风雨1210发布了新的文献求助10
6秒前
6秒前
7秒前
小梁要加油完成签到,获得积分20
7秒前
Alpha发布了新的文献求助10
8秒前
刘鹏宇发布了新的文献求助10
9秒前
zhangscience完成签到,获得积分10
9秒前
可爱的函函应助若狂采纳,获得10
10秒前
小蘑菇应助阿美采纳,获得30
10秒前
科研通AI2S应助机智小虾米采纳,获得10
11秒前
充电宝应助Xx.采纳,获得10
12秒前
zhangscience发布了新的文献求助10
13秒前
深情安青应助大方嵩采纳,获得10
14秒前
英俊的铭应助大方嵩采纳,获得10
14秒前
李还好完成签到,获得积分10
15秒前
满意的柏柳完成签到,获得积分10
16秒前
17秒前
18秒前
18秒前
buno应助88采纳,获得10
18秒前
19秒前
三千世界完成签到,获得积分10
19秒前
19秒前
愉快的访旋完成签到,获得积分10
20秒前
Alpha完成签到,获得积分10
21秒前
大大发布了新的文献求助30
21秒前
翠翠发布了新的文献求助10
22秒前
半山发布了新的文献求助10
23秒前
23秒前
天天快乐应助CO2采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808