The modified prostate health index (PHI) outperforms PHI density in the detection of clinical prostate cancer within the PSA grey zone

医学 前列腺癌 前列腺 单变量分析 肾病科 前列腺特异性抗原 泌尿科 内科学 队列 曲线下面积 接收机工作特性 肿瘤科 核医学
作者
Haitao Chen,Bowen Shi,Yuping Wu,Yuhang Qian,Jiatong Zhou,Xi Zhang,Jie Ding,Haojie Chen
出处
期刊:International Urology and Nephrology [Springer Nature]
卷期号:54 (4): 749-756 被引量:2
标识
DOI:10.1007/s11255-022-03113-8
摘要

To compare the accuracy of several volume and diameters modified prostate health index (mPHI) models with PHI density (PHID), PHI, and other prostate-specific antigen (PSA) derivatives in detecting PSA grey zone prostate cancer (PCa).Between August 2020 and September 2021, a consecutive cohort of 214 suspected PCa patients with elevated total PSA values ranged from 4.0 to 10.0 ng/mL were prospectively recruited and received PHI detections and transrectal ultrasonography (TRUS) measurements, followed by systematic prostate biopsies confirmation.Among the 214 patients enrolled in the project, a total of 80 were diagnosed with PCa. In univariate analysis for the training cohort, the area under curve (AUC) of mPHI-2 [Formula: see text] was 0.8310, which outperformed PHID in identifying PSA grey zone PCa (P ≤ 0.0001) and showed the best net benefit in decision curve analysis (DCA). By a threshold of 0.2835, the sensitivity and specificity in the prediction of PCa were 78.9% and 90.3%, while the positive predictive value (PPV) and negative predictive value (NPV) were 78.3% and 78.6%, respectively.According to our present single-center experience, the mPHI-2 risk predictor outperformed PHID or other classical parameters alone in the PCa detection with a grey zone PSA level in Asian males.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
66发布了新的文献求助10
刚刚
一鸣完成签到,获得积分10
刚刚
刚刚
ding应助呵呵呵呵采纳,获得10
刚刚
刚刚
汉堡包应助hkxfg采纳,获得10
2秒前
3秒前
sw完成签到,获得积分10
3秒前
没有神的过往完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
6秒前
芋圆不圆完成签到,获得积分10
7秒前
招财不肥发布了新的文献求助10
8秒前
zxc111发布了新的文献求助10
8秒前
魔幻的从梦完成签到,获得积分10
8秒前
9秒前
Xiaoxiao应助sunyexuan采纳,获得10
10秒前
11秒前
12秒前
淼淼之锋完成签到 ,获得积分10
12秒前
赢赢完成签到 ,获得积分10
12秒前
13秒前
14秒前
科目三应助落落采纳,获得10
16秒前
67发布了新的文献求助10
16秒前
16秒前
溜溜完成签到,获得积分10
16秒前
xixi完成签到 ,获得积分10
17秒前
wanci应助科研通管家采纳,获得10
17秒前
撒上咖啡应助科研通管家采纳,获得10
17秒前
RC_Wang应助科研通管家采纳,获得10
17秒前
JamesPei应助科研通管家采纳,获得10
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
琪琪扬扬发布了新的文献求助10
17秒前
sutharsons应助科研通管家采纳,获得30
17秒前
orixero应助科研通管家采纳,获得10
18秒前
研友_VZG7GZ应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808