亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A denoising method for multidimensional magnetic resonance spectroscopy and imaging based on compressed sensing

降噪 噪音(视频) 压缩传感 数据集 计算机科学 数据处理 人工智能 合成数据 模式识别(心理学) 核磁共振 算法 物理 图像(数学) 操作系统
作者
David Koprivica,Ricardo P. Martinho,Mihajlo Novakovic,Michael J. Jaroszewicz,Lucio Frydman
出处
期刊:Journal of Magnetic Resonance [Elsevier BV]
卷期号:338: 107187-107187 被引量:1
标识
DOI:10.1016/j.jmr.2022.107187
摘要

Both in spectroscopy and imaging, t1-noise arising from instabilities such as temperature alterations, field-related frequency drifts, electronic and sample-spinning instabilities, or motions in in vivo experiments, affects many 2D Magnetic Resonance experiments. This work introduces a post-processing method that aims to attenuate t1-noise, by suitably averaging multiple signals/representations that have been reconstructed from the sampled data. The ensuing Compressed Sensing Multiplicative (CoSeM) denoising starts from a fully sampled 2D MR data set, discards random indirect-domain points, and makes up for these missing, masked data, by a compressed sensing reconstruction of the now incompletely sampled 2D data set. This procedure is repeated for multiple renditions of the masked data -some of which will have been more strongly affected by t1-noise than others. This leads to a large set of 2D NMR spectra/images compatible with the collected data; CoSeM chooses out of these those renditions that reduce the noise according to a suitable criterion, and then sums up their spectra/images leading to a reduction in t1-noise. The performance of the method was assessed in synthetic data, as well as in numerous different experiments: 2D solid and solution state NMR, 2D localized MRS of live brains, and 2D abdominal MRI. Throughout all these data, CoSeM processing evidenced 2-3 fold increases in SNR, without introducing biases, false peaks, or spectral/image blurring. CoSeM also retains a quantitative linearity in the information -allowing, for instance, reliable T1 inversion-recovery MRI mapping experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pp_iiig完成签到,获得积分10
4秒前
7秒前
菜菜博士发布了新的文献求助10
12秒前
湿棉花完成签到 ,获得积分10
16秒前
汤人雄完成签到,获得积分20
19秒前
21秒前
喜悦的小土豆完成签到 ,获得积分10
23秒前
李爱国应助lyu采纳,获得10
25秒前
聪明的心语完成签到,获得积分20
29秒前
30秒前
Margaery完成签到 ,获得积分10
30秒前
William_l_c完成签到,获得积分10
32秒前
33秒前
49秒前
科目三应助帅气雨珍采纳,获得20
53秒前
1分钟前
Mark_He发布了新的文献求助10
1分钟前
淡然的鸽子完成签到 ,获得积分10
1分钟前
cen完成签到,获得积分10
1分钟前
1分钟前
CodeCraft应助曹能豪采纳,获得10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
xin完成签到,获得积分10
1分钟前
哇啦啦发布了新的文献求助10
1分钟前
能干觅夏完成签到 ,获得积分10
1分钟前
1分钟前
曹能豪发布了新的文献求助10
1分钟前
黑豆也发布了新的文献求助10
1分钟前
桐桐应助粗心的小蜜蜂采纳,获得10
1分钟前
黑豆也完成签到,获得积分10
1分钟前
善良的蛋挞完成签到,获得积分10
2分钟前
2分钟前
xftx完成签到,获得积分10
2分钟前
Tendency完成签到 ,获得积分10
2分钟前
栗子完成签到,获得积分10
2分钟前
文豪发布了新的文献求助10
2分钟前
搜集达人应助文豪采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581480
求助须知:如何正确求助?哪些是违规求助? 3999419
关于积分的说明 12381258
捐赠科研通 3674066
什么是DOI,文献DOI怎么找? 2024837
邀请新用户注册赠送积分活动 1058695
科研通“疑难数据库(出版商)”最低求助积分说明 945455