A denoising method for multidimensional magnetic resonance spectroscopy and imaging based on compressed sensing

降噪 噪音(视频) 压缩传感 数据集 计算机科学 数据处理 人工智能 合成数据 模式识别(心理学) 核磁共振 算法 物理 图像(数学) 操作系统
作者
David Koprivica,Ricardo P. Martinho,Mihajlo Novakovic,Michael J. Jaroszewicz,Lucio Frydman
出处
期刊:Journal of Magnetic Resonance [Elsevier BV]
卷期号:338: 107187-107187 被引量:1
标识
DOI:10.1016/j.jmr.2022.107187
摘要

Both in spectroscopy and imaging, t1-noise arising from instabilities such as temperature alterations, field-related frequency drifts, electronic and sample-spinning instabilities, or motions in in vivo experiments, affects many 2D Magnetic Resonance experiments. This work introduces a post-processing method that aims to attenuate t1-noise, by suitably averaging multiple signals/representations that have been reconstructed from the sampled data. The ensuing Compressed Sensing Multiplicative (CoSeM) denoising starts from a fully sampled 2D MR data set, discards random indirect-domain points, and makes up for these missing, masked data, by a compressed sensing reconstruction of the now incompletely sampled 2D data set. This procedure is repeated for multiple renditions of the masked data -some of which will have been more strongly affected by t1-noise than others. This leads to a large set of 2D NMR spectra/images compatible with the collected data; CoSeM chooses out of these those renditions that reduce the noise according to a suitable criterion, and then sums up their spectra/images leading to a reduction in t1-noise. The performance of the method was assessed in synthetic data, as well as in numerous different experiments: 2D solid and solution state NMR, 2D localized MRS of live brains, and 2D abdominal MRI. Throughout all these data, CoSeM processing evidenced 2-3 fold increases in SNR, without introducing biases, false peaks, or spectral/image blurring. CoSeM also retains a quantitative linearity in the information -allowing, for instance, reliable T1 inversion-recovery MRI mapping experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莹0000发布了新的文献求助10
1秒前
zhouxuefeng完成签到,获得积分10
1秒前
Akim应助爱科研采纳,获得50
2秒前
3秒前
朱建军应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
4秒前
RC_Wang应助科研通管家采纳,获得10
4秒前
4秒前
共享精神应助Volcano采纳,获得10
8秒前
8秒前
8秒前
ali完成签到,获得积分20
9秒前
han发布了新的文献求助10
10秒前
大个应助无限雨南采纳,获得10
11秒前
丘比特应助幽默尔蓝采纳,获得10
11秒前
EED发布了新的文献求助10
12秒前
12秒前
yy完成签到,获得积分10
13秒前
13秒前
13秒前
李爱国应助十三儿采纳,获得10
14秒前
ali发布了新的文献求助10
15秒前
15秒前
HOME发布了新的文献求助10
17秒前
熊大哥发布了新的文献求助10
19秒前
20秒前
科研马完成签到,获得积分10
21秒前
猫和老鼠发布了新的文献求助10
22秒前
22秒前
23秒前
发篇Sci不过分吧完成签到,获得积分20
23秒前
奥特超曼应助易槐采纳,获得10
25秒前
25秒前
上官若男应助Supreme采纳,获得10
25秒前
熊大哥完成签到,获得积分10
25秒前
25秒前
26秒前
小蘑菇应助威武的手链采纳,获得10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988920
求助须知:如何正确求助?哪些是违规求助? 3531290
关于积分的说明 11253247
捐赠科研通 3269903
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882027
科研通“疑难数据库(出版商)”最低求助积分说明 809052