Adapt-Kcr: a novel deep learning framework for accurate prediction of lysine crotonylation sites based on learning embedding features and attention architecture

嵌入 计算机科学 卷积神经网络 判别式 深度学习 人工智能 人工神经网络 机器学习
作者
Zutan Li,Jingya Fang,Shining Wang,Liangyun Zhang,Yuanyuan Chen,Cong Pian
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (2) 被引量:18
标识
DOI:10.1093/bib/bbac037
摘要

Protein lysine crotonylation (Kcr) is an important type of posttranslational modification that is associated with a wide range of biological processes. The identification of Kcr sites is critical to better understanding their functional mechanisms. However, the existing experimental techniques for detecting Kcr sites are cost-ineffective, to a great need for new computational methods to address this problem. We here describe Adapt-Kcr, an advanced deep learning model that utilizes adaptive embedding and is based on a convolutional neural network together with a bidirectional long short-term memory network and attention architecture. On the independent testing set, Adapt-Kcr outperformed the current state-of-the-art Kcr prediction model, with an improvement of 3.2% in accuracy and 1.9% in the area under the receiver operating characteristic curve. Compared to other Kcr models, Adapt-Kcr additionally had a more robust ability to distinguish between crotonylation and other lysine modifications. Another model (Adapt-ST) was trained to predict phosphorylation sites in SARS-CoV-2, and outperformed the equivalent state-of-the-art phosphorylation site prediction model. These results indicate that self-adaptive embedding features perform better than handcrafted features in capturing discriminative information; when used in attention architecture, this could be an effective way of identifying protein Kcr sites. Together, our Adapt framework (including learning embedding features and attention architecture) has a strong potential for prediction of other protein posttranslational modification sites.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助子车逍遥采纳,获得10
刚刚
huanger发布了新的文献求助10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
民名命完成签到,获得积分10
1秒前
松果完成签到,获得积分20
1秒前
1秒前
1秒前
2秒前
Naixichaohaohe完成签到,获得积分10
2秒前
柠檬九分酸完成签到,获得积分10
2秒前
2秒前
孙壮壮发布了新的文献求助10
3秒前
meimingzi完成签到,获得积分10
3秒前
3秒前
冷静寒风发布了新的文献求助10
4秒前
谢佳乐发布了新的文献求助10
4秒前
大个应助雨歌采纳,获得10
5秒前
香蕉觅云应助踏实的忆寒采纳,获得10
5秒前
大个应助宋祝福采纳,获得10
5秒前
lejunia发布了新的文献求助10
5秒前
hanlanx发布了新的文献求助10
5秒前
5秒前
紫苏桃子姜完成签到,获得积分10
6秒前
天Q发布了新的文献求助10
7秒前
松果发布了新的文献求助30
7秒前
实验鱼发布了新的文献求助10
7秒前
Zyyyyyy完成签到,获得积分10
7秒前
7秒前
8秒前
Hakunamatata完成签到,获得积分10
9秒前
10秒前
coolru发布了新的文献求助10
10秒前
科研通AI2S应助彭a采纳,获得10
10秒前
iOhyeye23完成签到 ,获得积分10
10秒前
11秒前
隐形曼青应助执着的忆曼采纳,获得10
11秒前
笨笨的秋蝶完成签到,获得积分10
11秒前
yoowt完成签到,获得积分10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645868
求助须知:如何正确求助?哪些是违规求助? 4769933
关于积分的说明 15032529
捐赠科研通 4804556
什么是DOI,文献DOI怎么找? 2569078
邀请新用户注册赠送积分活动 1526182
关于科研通互助平台的介绍 1485721