Adapt-Kcr: a novel deep learning framework for accurate prediction of lysine crotonylation sites based on learning embedding features and attention architecture

嵌入 计算机科学 卷积神经网络 判别式 深度学习 人工智能 人工神经网络 机器学习
作者
Zutan Li,Jingya Fang,Shining Wang,Liangyun Zhang,Yuanyuan Chen,Cong Pian
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (2) 被引量:18
标识
DOI:10.1093/bib/bbac037
摘要

Protein lysine crotonylation (Kcr) is an important type of posttranslational modification that is associated with a wide range of biological processes. The identification of Kcr sites is critical to better understanding their functional mechanisms. However, the existing experimental techniques for detecting Kcr sites are cost-ineffective, to a great need for new computational methods to address this problem. We here describe Adapt-Kcr, an advanced deep learning model that utilizes adaptive embedding and is based on a convolutional neural network together with a bidirectional long short-term memory network and attention architecture. On the independent testing set, Adapt-Kcr outperformed the current state-of-the-art Kcr prediction model, with an improvement of 3.2% in accuracy and 1.9% in the area under the receiver operating characteristic curve. Compared to other Kcr models, Adapt-Kcr additionally had a more robust ability to distinguish between crotonylation and other lysine modifications. Another model (Adapt-ST) was trained to predict phosphorylation sites in SARS-CoV-2, and outperformed the equivalent state-of-the-art phosphorylation site prediction model. These results indicate that self-adaptive embedding features perform better than handcrafted features in capturing discriminative information; when used in attention architecture, this could be an effective way of identifying protein Kcr sites. Together, our Adapt framework (including learning embedding features and attention architecture) has a strong potential for prediction of other protein posttranslational modification sites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
香蕉觅云应助犹豫的毛豆采纳,获得10
3秒前
tender完成签到,获得积分10
5秒前
6秒前
领导范儿应助scitester采纳,获得10
6秒前
标致小翠发布了新的文献求助10
7秒前
Bonnie发布了新的文献求助10
7秒前
情怀应助Djnsbj采纳,获得10
7秒前
wyj完成签到,获得积分20
8秒前
研友_J8Dbbn完成签到,获得积分10
9秒前
brucezheng发布了新的文献求助10
9秒前
9秒前
9秒前
大敏完成签到,获得积分10
12秒前
13秒前
十六发布了新的文献求助10
14秒前
可靠的凝海完成签到,获得积分10
14秒前
调皮嫣娆发布了新的文献求助10
14秒前
牛牛发布了新的文献求助10
14秒前
A阿澍完成签到,获得积分10
15秒前
15秒前
浅色墨水发布了新的文献求助10
15秒前
紫烨完成签到,获得积分10
16秒前
情怀应助毛子涵采纳,获得10
17秒前
聂越发布了新的文献求助10
17秒前
yznfly应助曾珍采纳,获得50
20秒前
20秒前
当里个当发布了新的文献求助10
20秒前
土豆你个西红柿完成签到 ,获得积分10
21秒前
自然秋柳完成签到 ,获得积分10
21秒前
22秒前
标致绮露发布了新的文献求助10
22秒前
淮h发布了新的文献求助10
23秒前
24秒前
肖敏完成签到,获得积分10
24秒前
69发布了新的文献求助10
24秒前
香蕉觅云应助zgdzhj采纳,获得10
24秒前
QC发布了新的文献求助10
25秒前
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966458
求助须知:如何正确求助?哪些是违规求助? 3511940
关于积分的说明 11161056
捐赠科研通 3246726
什么是DOI,文献DOI怎么找? 1793483
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403