Adapt-Kcr: a novel deep learning framework for accurate prediction of lysine crotonylation sites based on learning embedding features and attention architecture

嵌入 计算机科学 卷积神经网络 判别式 深度学习 人工智能 人工神经网络 机器学习
作者
Zutan Li,Jingya Fang,Shining Wang,Liangyun Zhang,Yuanyuan Chen,Cong Pian
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (2) 被引量:18
标识
DOI:10.1093/bib/bbac037
摘要

Protein lysine crotonylation (Kcr) is an important type of posttranslational modification that is associated with a wide range of biological processes. The identification of Kcr sites is critical to better understanding their functional mechanisms. However, the existing experimental techniques for detecting Kcr sites are cost-ineffective, to a great need for new computational methods to address this problem. We here describe Adapt-Kcr, an advanced deep learning model that utilizes adaptive embedding and is based on a convolutional neural network together with a bidirectional long short-term memory network and attention architecture. On the independent testing set, Adapt-Kcr outperformed the current state-of-the-art Kcr prediction model, with an improvement of 3.2% in accuracy and 1.9% in the area under the receiver operating characteristic curve. Compared to other Kcr models, Adapt-Kcr additionally had a more robust ability to distinguish between crotonylation and other lysine modifications. Another model (Adapt-ST) was trained to predict phosphorylation sites in SARS-CoV-2, and outperformed the equivalent state-of-the-art phosphorylation site prediction model. These results indicate that self-adaptive embedding features perform better than handcrafted features in capturing discriminative information; when used in attention architecture, this could be an effective way of identifying protein Kcr sites. Together, our Adapt framework (including learning embedding features and attention architecture) has a strong potential for prediction of other protein posttranslational modification sites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
千瓦时醒醒完成签到,获得积分10
1秒前
3秒前
4秒前
b3lyp完成签到,获得积分20
4秒前
大个应助小狐狸采纳,获得30
5秒前
糊涂的炳发布了新的文献求助10
5秒前
甜蜜的笑白完成签到,获得积分10
6秒前
hgq完成签到,获得积分20
6秒前
b3lyp发布了新的文献求助10
7秒前
喵喵喵完成签到,获得积分10
8秒前
追寻宛海完成签到 ,获得积分10
8秒前
Hitacl发布了新的文献求助10
9秒前
完美世界应助IAMXC采纳,获得10
9秒前
99giddens应助木筝丹青采纳,获得10
10秒前
LArry完成签到,获得积分10
10秒前
我是老大应助小猴采纳,获得10
11秒前
11秒前
科研通AI2S应助理想三寻采纳,获得10
11秒前
12秒前
lincool发布了新的文献求助10
13秒前
ke科研小白完成签到,获得积分10
15秒前
张培培完成签到,获得积分20
16秒前
16秒前
Hitacl完成签到,获得积分10
19秒前
占那个完成签到 ,获得积分10
19秒前
19秒前
陈宛婷发布了新的文献求助100
19秒前
20秒前
英姑应助翟如风采纳,获得10
21秒前
22秒前
张培培发布了新的文献求助10
22秒前
23秒前
无力大白菜完成签到 ,获得积分10
23秒前
23秒前
Joe关注了科研通微信公众号
24秒前
默渡完成签到,获得积分10
25秒前
25秒前
细腻新筠完成签到,获得积分10
26秒前
研友-L.Y发布了新的文献求助10
27秒前
趣多多发布了新的文献求助10
27秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Heteroatom-Doped Carbon Allotropes: Progress in Synthesis, Characterization, and Applications 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159874
求助须知:如何正确求助?哪些是违规求助? 2810842
关于积分的说明 7889629
捐赠科研通 2469910
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012